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Abstract
Integrating the Relativistic Lorentz Force Law for plasma

simulations is an area of current research ([1–3]). In partic-

ular, recent research indicates that interaction with highly-

relativistic laser fields is particularly problematic for cur-

rent integration techniques [1]. Here is presented a special-

purpose integrator yielding improved accuracy for highly-

relativistic laser-particle interactions. This integrator has

been implemented in the particle-in-cell code VSim [4], and

the authors present an accuracy and performance compari-

son with several particle push methods.

INTRODUCTION
Several current areas of accelerator research involve

highly-relativistic radiation interacting with an under-

dense plasma, i.e. radiation for which the parameter

a0 =
eEmax

mcω � 1 for at least one of the species of particles

comprising the plasma. Recent work [1], [5] has highlighted

that particle-in-cell simulations of such systems using the

standard Boris push [6] can exhibit numerical artifacts at

standard resolutions. Many simulations of Laser Wakefield

Acceleration (LWFA) do not exhibit these artifacts, because

particles do not interact with high-a0 radiation for long times.

However, there has been significant recent interest in simula-

tions of the pure Direct Laser Acceleration (DLA) regime [7],

where a laser pulse much longer than the plasma wavelength

propagates through a plasma, and of hybrid LWFA [8, 9],

where beam particles interact significantly with the laser

pulse.

Particle-in-cell simulations are both necessary to under-

stand the complex non-linear dynamics of these systems,

and very computationally expensive. Thus, algorithms for

reducing the computational burden associated with them are

desirable. The purpose of this paper is to present a new par-

ticle push algorithm for use in particle-in-cell simulations

where plasma particles interact with high-a0 radiation for a

substantial portion of the total simulation length.

PLANE-WAVE CASE
The highest-field regions of the simulations of interest

resemble a vacuum plane wave plus some perturbations due

to interaction with the plasma and the finite spatial extent

of the laser pulse. This paper’s method exploits that charac-

teristic of these simulations, and hence it will be referred to

henceforth as the “luminal push.” In the current section we

derive the algorithm for the case of a linearly-polarized plane

wave travelling in vacuum, polarized along the y axis and
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propagating along the x axis. We use a leap-frog method,

where the coordinates and momenta are alternately held con-

stant. Advancing the coordinates is trivial; the novel part

of the method is in integrating the Lorentz Force Law to

determine the change in momenta.

In what follows, γ is the Lorentz factor. The quantity

Γ = γ −
px

mc is a constant of the motion for the particle, and

from this can be derived the following set of equations for

uy =
py

m , ux =
px

m , and γ:

γ =
c2(1 + Γ2) + u2

y

2Γc2
(1)

ux =
c2(1 − Γ2) + u2

y

2Γc
(2)

duy
dt
=

cΓΩ
γ

(3)

where Ω =
qB
m =

qE
mc , which are constant because x is held

constant for this portion of the leap-frog integration. Using

the equation for γ yields the following ODE governing the

evolution of uy ,

duy
dt
=

2cΓ2Ω

1 + Γ2 + 1
c2 u2

y

(4)

which can be integrated to yield

1

6c2Γ
(u3 − u3

0) +
(1 + Γ2)

2Γ
(u − u0) = cΓΩt (5)

implicitly defining uy(Δt). The explicit solution to Eq. (5) is

u(t) = 2c
√

1 + Γ2 sinh

(
1

3

sinh−1

(
u3

0
+ 3c2(1 + Γ2)u0 + 6c3Γ2Ωt

2c3(1 + Γ2)3/2

))
(6)

from which ux and γ can be obtained using Eqs. (1) and (2).

GENERAL FIELDS
General electromagnetic fields can be written as a sum

of fields �E ′ and �B′ satisfying �E ′ × �B′ = �E × �B, �E ′ · �B′ = 0

and E ′2 − c2B′2 = 0 and residual fields �E ′′ and �B′′. We

will refer to fields satisfying the latter two conditions on �E ′

and �B′ as “luminal”. The residual fields may or may not be

luminal themselves, but we aim to split the fields in such a

way that they are small.

In what follows, we derive the choice of �E ′ and �B′ that

minimizes the energy density of the residual fields. If �E and
�B are (anti-)parallel, then the Poynting vector vanishes and
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the splitting is trivially complete, so assume that the electric

and magnetic fields make an angle α � 0, π with one another.

Then define

P2 =
1

c
| �E × �B| (7)

tan θ =
�E · �B

c(B2 + P2)
(8)

�B′ =
P
B

R �E× �B
(θ) �B (9)

�E ′ =
�B′ × ( �E × �B)

P2
(10)

�B′′ = �B − �B′ (11)

�E ′′ = �E − �E ′ (12)

where R �E× �B
(θ) is a matrix that rotates about �E × �B by an

angle θ.

It should be clear by inspection that the vectors �E ′ and �B′

are mutually perpendicular with �E × �B and have magnitudes

cP and P, respectively, so they define a luminal field with

Poynting Vector equal to �E × �B. The energy density of the

residual fields �E ′′ and �B′′ is proportional to

(E ′′)2 + c2(B′′)2 = | �E − �E ′ |2 + c2 | �B − �B′ |2 (13)

= E2 + c2B2 + 2c2P2 − 2( �E · �E ′ + c2 �B · �B′)
(14)

(15)

and the term

( �E · �E ′+c2 �B· �B′) = cEP cos (
π

2
− α − θ)+c2BP cos θ (16)

is maximized when θ is given as in Equation (8), so that

choice of θ minimizes the energy density of the residual

field.

This is only one possible splitting of the fields. As long

as the residual fields are small, the essential idea of the

method is valid. In particular, for a linearly-polarized laser

pulse, it may be sufficient to simply use luminal fields with

a prescribed polarization, scaled to match the magnitude of

the Poynting vector. Furthermore, the square root in Eq. (7)

for P2 and the inverse tangent in Eq. (8) for θ do not need to

be calculated to perfect accuracy, so long as �E ′ and �B′ are,

in fact, mutually perpendicular with magnitudes scaled by c
and the residuals are calculated correctly.

To integrate these general fields, we use again a leapfrog

approach, first pushing the particle for half a time step using

the residual fields and any general-purpose particle pusher,

then pushing the particle for a whole time step, using the

luminal fields �E ′ and �B′ and the methods of the previous se-

cion, where that section’s x is the axis parallel to the Poynting

vector and that section’s y is the axis parallel to �E ′. Finally

we push the particle another half time step, again using any

general-purpose particle push algorithm.

NUMERICAL RESULTS

This algorithm was implemented and used to integrate

the trajectory of a single particle in a plane wave over 1000

laser periods. The plane wave fields were evaluated ana-

lytically at the particle’s location each time-step using the

Boris integrator, Vay’s relativistic integrator [2], and the new

luminal integrator. The results are presented in Figs. 1 and 2,

from which it is evident that the luminal integrator was much

better than the alternatives at correctly computing the longi-

tudinal wavelength Λ and secular drift δ ȳ of the particle’s

orbit.

Figure 1: Fractional error in Λ̄ for particle in plane wave

field for 1000 optical cycles, using Boris push (dash-dotted),

Vay push (dashed) and Luminal push (solid), for a0 values

of 5 (black), 15 (cyan) and 25 (blue).

Figure 2: Fractional error in δ ȳ for particle in plane wave

field for 1000 optical cycles, using Boris push (dash-dotted),

Vay push (dashed) and Luminal push (solid), for a0 values

of 5 (black), 15 (cyan) and 25 (blue).
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CONCLUSION
This paper presents a special-purpose particle push of use

in simulations where charged particles interact with high-a0

radiation. It was demonstrated to have performance superior

to alternatives for the case of an analytically-known plane

wave field, and an extension to general fields was provided.
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