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Abstract
When untapered high-gain free electron laser (FEL)

reaches saturation, the exponential growth ceases and the ra-

diation power starts to oscillate about an equilibrium. For a

high-gain tapered FEL, although the power is enhanced after

the first saturation, it is known that there is a so-called second

saturation point where the FEL power growth stops. In addi-

tion to the sideband instability, lack of transverse radiation

focusing in the post-saturation regime can be another major

reason leading to occurrence of the second saturation. In this

paper we study the transverse diffraction effect and its im-

pact on tapered FEL in the post-saturation regime. The study

is carried out analytically together with three-dimensional

numerical simulation.

THEORETICAL FORMULATION
We begin by formulating the problem based on the fol-

lowing single-particle Hamiltonian [1]

H(θ j, ηj ; ẑ) = (ηj − ηR)
2

2 fR
− i

fB(ẑ)
fR(ẑ)

(
Eeiθ j − E∗e−iθ j

)
(1)

where j(= 1, 2, 3, · · · , Ne) is the index for each individual
particle and Ne is the total number of macroparticles (elec-

trons). θ = (kR+ku)z−ωRt is the electron phasewith respect
to the radiation, ku = 2π/λu with λu the undulator period,
kR = 2π/λR, andωR = ckR, η ≡ [γ − γR(0)]/ργR(0), with
γR(0) the initial Lorentz relativistic factor, is the normalized
energy deviation with respect to the dimensionless FEL or

Pierce parameter ρ = 1
γR (0)

(
4πe2n0K

2
0

32m0c2k
2
u

)1/3
with e the charge

unit, n0 the volume density of the electron beam, m0 the elec-

tron rest mass and ηR = [γR − γR(0)]/ργR(0). The longitu-
dinal coordinate is normalized according to ẑ = 2kuρz. In
the case of undulator tapering, the electron reference energy

follows γR(ẑ) = γR(0) fR(ẑ) where fR(ẑ) =
√

1+K2(ẑ)/2
1+K2

0/2 and

K(ẑ) = fB(ẑ)K0 with K0 the (peak) dimensionless helical

undulator parameter. Here |E | = |E |
/√

4πn0ργR(0)m0c2 is
the normalized amplitude of the electric field E .
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From Hamilton’s equations, we can obtain the single-

particle equations of motion for the electron phase and en-

ergy deviation. The normalized electric field, governed by

the 1-D paraxial wave equation, can be expressed as

∂E
∂ ẑ
=

fB(ẑ)
fR(ẑ)

〈
e−iθ

〉
(2)

where the bracket 〈...〉 denotes an ensemble average over the
electron beam in the steady state (or a single bunch slice).

It is straightforward to find the energy conservation from

Eqs.(1) and (2) that

|E(ẑ)|2 + 〈η〉 = 0. (3)

The other constant of motion comes from adiabatic invariant

of action variable. If the change of fraction of undulator

tapering is slow compared with the synchrotron oscillation

period Ωsyn, the corresponding action variable can be still

considered as a constant of motion and is expressed

〈η − ηR〉2
2Ωsyn(ẑ) fR(ẑ)

+
2 fB(ẑ)

Ωsyn(ẑ) fR(ẑ)
|E(ẑ)| 〈sin (θ + φ)〉 = 0.

(4)

Below in this subsection we take advantage of Gluckstern

et al. [2] to parameterize the radiation field solution based
on the equilibrium solution. The equilibrium solution here

is referred to as the solution evaluated at the starting location

of the undulator tapering or the first-saturation location. For

the solution of the radiation field, we take the following form

E = (P + iQ)eiΦ, (5)

where Φ ≈ κ0 + κ1(ẑ − ẑ0) + κ2
2
(ẑ − ẑ0)2. Let us introduce

the variable β for the subsequent analysis, β = θ − θR − Φ,
which represents the displaced electron phase and 〈β′〉 ≈ 0

in the equilibrium [2]. The two constants of motion, Eqs.

(3) and (4), can also be expressed in the following forms,

P2 +Q2 + fR [〈β′〉 − κ1] + ηR = 0, (6)

and

fR

Ωsyn

{ 〈
β′2

〉
2

− κ1 〈β′ 〉 +
κ2
1

2
+ 2

fB

f 2R
(P 〈sin β〉 +Q 〈cos β〉)

}
≈ 0.

(7)

It has been known that the equilibrium (or unperturbed)

electron beam phase space distribution satisfies the Vlasov
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equation. The unperturbed solution can always be expressed

in an arbitrary function of the constant(s) of motion. From

the above analysis we have made the choice of using the

action variable as an invariant. In what follows we adopt

the Boltzmann-type distribution as the unperturbed solu-

tion [2]. It can be written in the form fBZM = Ne−αĨ (β,β
′;ẑ),

whereN is the normalization coefficient such that 〈 fBZM〉 ≡
2π∫
0

∞∫
−∞

dβdβ′ fBZM(β, β′) = 1, and α is a measure of the par-
ticle spread in the ponderomotive potential well [3]. From

Eq. (7) we take Ĩ(β, β′; ẑ) = fR
2Ωsyn

(β′ − κ1)2 + 2 fB
Ωsyn fR

P sin β.

For convenience we also define χ = fB
/
Ωsyn, and K =

α fR
/
Ωsyn. Several relevant quantities can be evaluated, in-

cluding the normalization coefficient N =
√
K

(2π)3/2I0(2αχP)
.

Furthermore, the bunching parameters can also be eval-

uated 〈sin β〉 = − I1(2αχP)
I0(2αχP) ≈ −αχP ≡ −s̄, where I0

and I1 are respectively the zeroth- and first-order modified
Bessel function of the first kind, 〈cos β〉 = cosΘR, and〈
β′2

〉
= K−1 + κ2

1
.

Now we will extend the 1-D wave equation to axisym-

metric 2-D equation including the radial dependence of the

radiation field. The analysis will include the diffraction effect

and the guiding properties formed by the bunched electron

beam through the FEL process. The electron beam now

features a finite transverse size but the finite-emittance effect

is still neglected. The radiation diffraction effect is included

in the transverse Laplacian operator and the wave equation

can be written as

∂E
∂ ẑ

− i∇2⊥E =
fB(ẑ)
fR(ẑ)

U(r̂) 〈e−iθ 〉 , (8)

where U(r̂) is the transverse electron beam profile and the

scaled radius r̂ =
√
4ρkukRr. ∇2⊥ = r̂−1∂/∂r̂ (r̂∂/∂r̂). In

the absence of the right hand side (RHS) term, Eq. (8) be-

comes the paraxial Helmholtz equation and the solution can

be typically parameterized by the Gaussian beam [4]. The

presence of nonzero term on RHS of Eq. (8) acts as an

external medium. This medium, due to electron beam mi-

crobunching, leads to an effective index of refraction greater

than unity [5]. The two constants of motion now become∫
r̂dr̂P2(r̂; ẑ) = ( fRκ1 − ηR)

∫
r̂dr̂U(r̂), (9)

and∫
r̂dr̂U(r̂)

〈
(β′ − κ1)2

〉
=

2

fR

∫
r̂dr̂

[
κ1P2 + (∇⊥P)2

]
. (10)

Now we can solve the field equation, together with the

constants of motion in a given transverse electron beam

profile. Let us consider the simplest case, i.e., the uniform

stepped profileU(r̂) = 1 for r̂ � R̂ and 0 for r̂ > R̂. Here R̂ =√
4ρkukRR is the boundary of the transverse electron beam

density profile. Substituting into Eq. (8) and expressing E
in terms of P and Q, the resultant 2-D field equation can

be analytically solved. Imposing the continuity condition at

the beam boundary r̂ = R̂ gives a constraint and the explicit

expression of the radiation field solution can be written as

P(r̂; ẑ) =
{
AJ0(μr̂), r̂ � R̂
A J0(y)

K0(x)K0

(√
κ1r̂

)
, r̂ > R̂,

(11)

where x =
√
κ1 R̂, y = μR̂, and μ =

√
αχ fB/ fR − κ1. A is

the on-axis field amplitude, J0 and K0 are the zeroth order

ordinary Bessel function and the modified Bessel function

of the second kind, respectively. Substituting Eq. (11) into

Eqs. (9) and (10) we obtain

fRκ1 − ηR = A2

{
J20 (y) + J21 (y) +

J2
0
(y)

K2
0
(x)

[
K2
1 (x) − K2

0 (x)
]}

(12)

and

κ21 = 2αχ
fB
fR
A2

[
J20 (y) + J21 (y)

] − 1

2K (13)

Note that Eqs. (11-13) are to be solved for κ1, α, and
A. Of our particular interest the combined term ( fRκ1 −
ηR) represents the FEL power efficiency, i.e., fRκ1 − ηR =∫

r̂dr̂P2(r̂ ;ẑ)∫
r̂dr̂U(r̂) . The electron energy spread will increase during

the saturated FEL process and can be characterized by the

scaled energy spread
〈(η − ηR)2〉 = Ωsynα , where the Jacobian

due to the coordinate transformation,
���J (

∂(θ,η)
∂(β,β′)

)��� = fR is

introduced.

NUMERICAL RESULTS
Let us illustrate how the saturated power efficiency and

the effective width of the radiation field profile are affected

by the undulator tapering. Figure 1(a) and (b) show the de-

pendence of the power efficiency on the scaled transverse

electron beam size and the taper ratio, respectively. Unlike

the untapered case, the tapered power efficiency has very

weak dependence on the transverse electron beam size. Go-

ing from R̂ = 0.1 to R̂ = 5 the theoretical predictions give
0.1% and 0.02% difference for transverse uniform distribu-

tion for the untapered and 1% taper case, respectively. The

difference becomes even smaller for 8% taper ratio. The

dots in Fig. 1(a) are obtained from the full 3-D numerical

simulation GENESIS [6], where we can see both the theo-

retical predictions and the numerical results match well for

the untapered and 1% taper cases. For 8% taper case, there

appears a systematic deviation between the theoretical and

simulation results. However the independence of the trans-

verse electron beam size is shown. By looking at another

dimension of the power efficiency dependence, the power

extraction efficiency is now almost linearly dependent on the

taper ratio, as shown in Fig. 1(b). It is interesting to note that

when the taper ratio approaches to zero, i.e., the untapered

case, the power efficiency reaches a constant close to the FEL

or Pierce parameter ρ. It is further confirmed here that in
the beam-wave matched case the resultant power efficiency

can be close to, but still slightly smaller than, the total taper

ratio. In view of Fig. 1, we remind that the above argument
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of power efficiency scaling does not apply to any arbitrarily

large transverse beam size and to any level of taper ratio.

The aforementioned discussion assumes negligible electron

detrapping.

Figure 1: The dependence of the power efficiency on the

scaled transverse electron beam radius (a) for three specific

taper ratios (untapered, 1% and 8% taper ratios), and the

dependence on the taper ratio (b) for the uniform transverse

beam profile. The dots in (a,b) indicate the full 3-D nu-

merical simulation results from GENESIS for the electron

transverse uniform distribution. The inset in (b) shows the

crossing of the calculated power efficiency to the y = x
dotted line.

Below we also illustrate the dynamics of the radiation

field profile by using the full 3-D time-independent simu-

lation code GENESIS. This numerical illustration enables

us to see a clear picture how the spatial evolution of the

radiation field intensity in both transverse and longitudinal

dimensions, and the impact of undulator tapering. In the

numerical simulation the electron beam transverse profile is

set uniform round with the half width ≈ 28 μm in x and y

(or ≈ 40 μm in r) and the total length of the undulator is as-
sumed 70 m with λu = 2.6 cm. The corresponding radiation
wavelength is 3.1 Å. The first saturation power ≈ 22 GW
is matched at the beam waist with the input electron beam.

The transverse domain in the numerical setup extends from

−0.8 mm to +0.8 mm with a total number of 451× 451 grid
points to avoid possible numerical effects occurred along

the boundaries. In the numerical simulation the undulator

tapering starts at the very beginning with an overall taper

ratio of continuous and quadratic 8%. Figure 2(a) shows

the mountain-range plots for the evolution of the radiation

intensity profile for both untapered and 8% tapered cases,

where the clear broadening of the radiation field intensity

in the 8% tapered case is indicated. More quantitatively

Fig. 2(b) shows the evolution of the half-width half maxi-

mum of the radiation intensity profile. We see the transverse

pulse broadening proceeds after z > 20 m. Besides, more
and more of the enhanced radiation field intensity due to

undulator tapering is contributed from outside of the trans-

verse electron beam than from inside of it. By quantifying

the ratio of the sum of field intensity inside the transverse

electron beam size to that outside the beam, as shown in

Fig. 2(c), we can see a decrease trend in the curve for the

8% tapered case after z > 20 m. The on-axis field inten-

sity will therefore grow at a relatively slower rate than the

transversely integrated field intensity.

Figure 2: Three-dimensional mountain-range plot (a) for the

evolution of the radiation field intensity for the untapered

(red) and 8% tapered (blue) cases. The initial transverse

electron beam profile is assumed uniform within ≈ ±28 μm
in x and y (or ≈ ±40 μm in r). (b) The z-dependence of the
half-width half maximum of the intensity profile. (c) The

z-dependence of the ratio of the integrated field intensity
outside the electron beam to that inside the beam.

SUMMARY
In this paper we have analyzed the post-saturation dynam-

ics in a single-pass high-gain tapered FEL, including the

power efficiency, the induced energy spread, and the radi-

ation field intensity as a function of the scaled transverse

electron beam size and the the level of undulator tapering.

By taking advantage of two integrals of the motion, one

from the energy conservation and the other from the action

variable based on the adiabatic invariance of the undulator

tapering, we have studied one case that allows analytical

solutions of the radiation field: the uniform transverse elec-

tron beam profile. For another analytically solvable case,

the bounded parabolic beam profile, we refer the interested

reader to Ref. [7] for more details. The self-consistent so-

lutions allow us to clearly see the dependences of the FEL

power efficiency, the induced energy spread increase, and

the broadening of the radiation field intensity on both the

transverse electron beam size and the taper ratio.

It is found that the tapered power efficiency has weak de-

pendence on the transverse electron beam size and can be

greatly improved by virtue of undulator tapering up to its

total taper ratio prior to occurrence of significant electron

detrapping. In the presence of undulator tapering, besides

the total power is enhanced (compared with the untapered

case), it is also found that more and more the field intensity

is contributed from outside of the transverse electron beam

than from inside of it, consistent with the numerical obser-

vation in Ref. [8]. Finally we use a full three-dimensional

time-independent simulation [6] to illustrate the spatial evo-

lution of the radiation field intensity for an untapered and a

8% tapered case. The results are consistent with the conclu-

sion made in our theoretical analysis for broadening of the

radiation beam profile in the presence of undulator tapering.
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