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Abstract
A method to improve the spectral brightness of self-

amplified spontaneous emission (SASE) based on slippage

enhancement has been proposed [1–4]. An implementation

is to insert a series of magnetic chicanes to introduce a path-

length delay of the electron beam to the radiation beam. By

correlating the electron slices of neighboring cooperation

distances this can lengthen the collective interaction and

thus enhance the spectral brightness. In the existing litera-

ture most studies rely on numerical simulations and there

is limited work on analytical analysis. In this paper we for-

mulate the problem of slippage enhanced SASE (SeSASE)

high-gain FEL with inclusion of by-pass magnetic chicanes.

The analysis takes the finite energy spread of the electron

beam and the nonzero momentum compaction of the chicane

into consideration. The evolution of spectral bandwidth of

SeSASE is compared with that of usual SASE in theory. The

effects of finite beam energy spread and non-isochronisity

are also quantified.

THEORETICAL FORMULATION
In the theoretical formulation we largely follow the nota-

tion used in the book by K.-J. Kim et al. [5]. Let us start
from the single-particle equations of motion

dθ j
dz
= 2kuηj (1)

dηj
dz
= χ1E(θ j ; z) + c.c. = χ1

∫
dνEν(z)eiνθ j + c.c. (2)

where θ j is the ponderomotive phase of j-th particle, ηj =
(γj − γR)

/
γR is the energy deviation to the resonance one

γR, E and Eν are the electric field in time and normal-

ized frequency domain (ν = ω/ω1), respectively, κ1 =
eK[JJ]/4ε0γR and χ1 = eK[JJ]/2γ2Rmc2, with K the di-

mensionless undulator parameter and [JJ] the coupling fac-
tor. The 1-D wave equation based on slowly varying enve-

lope approximation can be formulated as(
∂

∂z
+ ku

∂

∂θ

)
E(θ; z) = −κ1ne 2πNλ

Ne∑
j=1

e−iθ j (z)δ
[
θ − θ j(z)

]
(3)
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where Nλ is the number of electrons in one radiation wave-

length λ1. The electron phase space distribution can be
described using the Klimontovich distribution function to

retain the discrete nature of the electrons, F(θ, η; z) =
k1

I/ec
Ne∑
j=1
δ
[
θ − θ j(z)

]
δ
[
η − ηj(z)

]
in which the dynamics

is governed by the continuity equation dF
dz =

∂F
∂z +

∂F
∂θ

dθ
dz +

∂F
∂η

dη
dz = 0. In general the continuity equation is nonlin-

ear since dη/dz depends on F as well. In the following

analysis, we are interested in the linear regime where the

electron phase space distribution can be well separated into

the smooth background and the small perturbing part, in

which the information of shot noise and perturbation due to

FEL process is contained. In addition we make the coast-

ing beam approximation in describing the electron beam

distribution. Under this approximation we have neglected

the situation when the radiation field slips over the edge

of an electron bunch, i.e., the slippage-induced superradi-

ance FEL [6] is excluded in our analysis. After linearizing

the continuity equation and transforming to the normalized

frequency domain, we obtain(
∂

∂z
+ 2iνkuη

)
Fν(η; z) + χ1Eν(z)dV

dη
= 0 (4)

where V(η) the electron beam energy distribution. The wave

equation Eq. (3) represented in the frequency domain is(
∂

∂z
+ iΔνku

)
Eν(z) = −κ1ne

∫
dηFν(η; z) (5)

Here we note that Eqs. (4) and (5) are more general and can

be reduced to those based on Bonifacio et al. collective-
variable description in the cold-beam limit [7]. To solve

Eqs. (4) and (5) as an initial value problem, we shall em-

ploy Laplace transform and the resultant electric field in the

frequency domain can be expressed as

Eν (z) =
∮

e−iμ2ρku z

2πiD(μ)

⎡⎢⎢⎢⎢⎣Eν (0) + iκ1ne

2ρku

1

Nλ

Ne∑
j=1

e−iνθ j (0)

η j (0)
/
ρ − μ

⎤⎥⎥⎥⎥⎦ dμ
(6)

where the dispersion relation D(μ) = μ − Δν
2ρ −

∫
V (η)dη
η/ρ−μ = 0. ρ

is the FEL or Pierce parameter. The contour integral should

enclose all the singularities and draw in the lower complex-μ

plane. The electron phase space distribution can be obtained

Fν,μ (η) = iχ1
2ρku

dV /dη
η/ρ−μ Eν,μ , provided Eν,μ is given.
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Figure 1: Schematic layout of multi-stage SeSASE FEL.

Now we consider the SeSASE FEL process with a

schematic layout shown in Fig. 1. Hereafter we assume

the chicane(s) shall be placed where the FEL process

is dominated by the unstable root, say, μ3 of D(μ). This
situation corresponds to that occurs after about two

FEL gain lengths. In what follows we aim to derive the

matrix representation for transport of Eν and Fν through

undulator section and magnetic chicane. The electric

field at the exit of n-th undulator section can be expressed

as Eν (z(n)f
) ≈ e−iμ32ρku L

(n)
u

D′(μ3)

[
Eν (z(n)i ) + iκ1ne

2ρku

∫
dη

Fν (η;z (n)i )
η/ρ−μ3

]
and the corresponding electron phase space distribu-

tion Fν (η; z(n)f
) = iχ1

2ρku

dV /dη
η/ρ−μ3 Eν (z(n)f

). After the chicane,

the electron beam is bypassed and the electric field

acquires an additional phase. The resultant electric

field and the electron phase space distribution be-

come Eν (z(n+1)i ) = Eν (z(n)f
)eiΔνku L

(n+1)
d = Eν (z(n)f

)eiΔνφ(n+1)

and Fν (η; z(n+1)i ) = Fν (η; z(n)f
)eiΔθ (n+1)(η), respec-

tively. In a general bypass transport line, we have

Δθ(n+1)(η) = krR
(n+1)
56

η − ψ(n+1) and ψ(n+1) = krR
(n+1)
56

/
2 with

R56 the momentum compaction. In terms of matrix rep-

resentation, we have

[
Eν

Fν

] (n)
f

= G
D′(μ3) M

(n)
UND

[
Eν

Fν

] (n)
i

=

G
D′(μ3)

(
1 ξ2H

ξ1V
′

η/ρ−μ3
ξ1V

′ξ2H
η/ρ−μ3

) [
Eν

Fν

] (n)
i

for the undula-

tor segment, where G(n) ≡ e−i2μ3ρku L
(n)
u ,G(n+1)G(n) =

e
−i2μ3ρku

(
L

(n+1)
u +L

(n)
u

)
, ξ1 ≡ iχ1/2ρku, ξ2 ≡ iκ1ne/2ρku, ξ1ξ2 =

−ρ, and H(...) ≡
∫ (. . .)dη

η/ρ−μ3 . Furthermore, we have[
Eν

Fν

] (n+1)
i

= M(n+1)
CC

[
Eν

Fν

] (n)
f

=

(
eiΔνφ

(n+1)
0

0 eiΔθ
(n+1)

) [
Eν

Fν

] (n)
f

for the by-pass chicane. Now, let us consider the 1/2

undulator-chicane-1/2 undulator module (Fig. 1). The

resultant expression at the exit of this module is

[
Eν

Fν

] (2)
f

=
G(2)G(1)

D′(μ3)
M(2)

UND
MCCM(1)

UND

[
Eν

Fν

] (1)
i

(7)

where the matrix multiplication can be analytically obtained.

Note that H depends on the specific energy distribution

of electron beam. For the cold-beam case, we have

H
(
eiΔθ

ξ1V
′

η/ρ−μ3

)
cold
= −ξ1

(
ikrR56

e−iψ

μ2
3

+
2

ρ

e−iψ

μ3
3

)
(8)

and for the uniform energy distribution we have

H
(
eiΔθ

ξ1V
′

η/ρ−μ3

)
uniform

= − ξ1
ρζ

����
e−i(ψ−kr R56

ρζ/2)(
ζ/2 − μ

3

)2 − e−i(ψ+kr R56
ρζ/2)(

ζ/2 + μ
3

)2 ��� (9)

where V (η) = 1
ρζ , |η | �

ρζ
2
and 0 elsewhere. Figure 2 illus-

trates the imaginary part of (unstable) root of D(μ) and H
for the case of uniform energy distribution.

Figure 2: (Left) The growth rate as a function of scaled

detuning. (Right) |H | and Φ as a function of R56, where
H ≡ ξ1 |H | eiΦ. Here Δν = 0.4ρ,Δη = 5 × 10−4, ζ = 0.89.

For simplicity in what follows we define

H
(
eiΔθ

(n) ξ1V
′

η/ρ−μ3

)
≡ ξ1H

(n). Assume the individual

undulator segments are identical. For N undulator sections[
Eν

Fν

] (N )

f

=
G(N )

D′(μ3)
N
Π
j=2

G( j)
(
eiΔνφ

( j) − ρH ( j)
)
MUND

[
Eν

Fν

] (1)
i

(10)

Here we note that Eq. (10) is a general expression, from

which we will evaluate the SeSASE performance, its spectral

and statistical properties. These include the spectral power

and bandwidth, the correlation function and coherence

length, and can indicate the interference phenomenon. For

temporal field profile, we take the inverse Fourier transform-

ration Ex (z, t) =
∫
dνEν (z)eiΔν[(k1+ku )z−ω1 t ]+i(k1z−ω1 t ). Then

for SeSASE case the resultant expression can be obtained

ESeSASE
x (z, t) ∝ e

√
3ρku z

√
z

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ne∑
j=1

e
−iω1[t−t j (0)−z/c]−

[(
1+i

√
3
)/
4σ2

τ0

]
[t−t j (0)−z/vg+φ]2

−ρH
Ne∑
j=1

e
−iω1[t−t j (0)−z/c]−

[(
1+i

√
3
)/
4σ2

τ0

]
[t−t j (0)−z/vg]2

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(11)

In obtaining Eq. (11) we have assumed the weak depen-

dence of H on Δν, so that H is excluded in the integration.

The two-wave interference is obvious in the expression: the

first term corresponds to the original wave packet and the

second term indicates the newly grown wave packet.

Let us evaluate the power spectral density for SASE [5],

dP

dω

****
SASE

≈ ez/LG−(ω−ωm )2/2ω2
mσ2

ν0gA

(
dP

dω

****
0

+ gS
ργRmc2

2π

)
(12)

where gA =
1

|D′(μ)|2 and gS =
∫

V (η)dη

|η/ρ−μ |2 . Here gA measures

how the initial radiation power and shot noise seed the inter-

action, while gS quantifies the relative increase in shot noise

seeding as the beam energy spread increases [5].
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Now we consider the simplest SeSASE case, i.e., N = 2.

Then we have ESeSASE
v, f =

(
eiΔνφ − ρH

)
ESASE
ν, f . The power spec-

tral density can be expressed as dP
dω

**
SeSASE

= S(φ, H) dP
dω

**
SASE

, where S(φ, H) = 1 + ρ2 |H |2 − 2ρ |H | cos(Δνφ + Φ). Here we
note that the shape function S is general in the sense that it

contains the finite energy spread of the electron beam and

allows the nonzero R56. The spectrum bandwidth can then

be evaluated analytically by σ2
ν ≡

∫
dνν2dP/dν

/∫
dνdP/dν

σν

νmσν0
=

√√√√√√√√√ 1 + ρ2 |H |2 − 2ρ |H |
(1 − ν2mσ2

ν0φ
2) cos(Δνmφ + Φ)e−ν2mσ2

ν0
φ2/2

1 + ρ2 |H |2 − 2ρ |H | cos(Δνmφ + Φ)e−ν2mσ2
ν0
φ2/2
(13)

Figure 3 shows the shape function as a function of R56

for several different frequency detunes and the spectrum

bandwidth of SeSASE as a function of phase shift φ for

N = 2 case. In the numerical illustration we assume λ1 = 0.31

nm, ρ = 5.6 × 10−4, the full-width (uniform) energy spread
5 × 10−4, and the 1-D gain length LG = 2.13 m.

Figure 3: (Left) The shape function S as a function of mo-

mentum compaction R56 for different Δν. (Right) The rela-
tive frequency bandwidth as a function of phase shift φ for
different R56 at z = 10LG .

Similarly, for the case of N = 3, we have ESeSASE
v, f =(

eiΔνφ(3) − ρH (3)) (eiΔνφ(2) − ρH (2)) ESASE
ν, f and the power spec-

tral density dP
dω

**
SeSASE

= S(φ(2), φ(3), H (2), H (3)) dP
dω

**
SASE

. The

spectrum bandwidth can also be obtained analytically.

In the most general case, the shape function

can be symbolically formulated as
***ESeSASE

v, f

***2 =**** NΠ
j=2

(
eiΔνφ

( j) − ρH ( j)
)****2***ESASE

ν, f

***2. Having evaluated the spectral
shape characteristics, let us look at the correlation function,

expressed as C(τ) ≡ 〈∫
dtE(t)E∗(t + τ)〉/〈∫ dt |E(t) |2〉 =〈∫

dω dP
dω e−iωτ

〉/ 〈P〉 , where the Weiner-Khinchin theorem
has been used in the second equality [5]. The denominator

can be obtained by 〈P〉 = 〈∫
dν dP

dν

〉
where dP/dν for SASE

is given in Eq. (12) 〈P〉SASE = gAgS
ργRmc2

2π

√
2πω1σν0e

z/LG .

For SeSASE case, we have

〈P〉SeSASE = 〈P〉SASE
[
1 + ρ2 |H |2 − 2ρ |H | e−σ2

ν0
φ2/2 cosΦ

]
.

(14)

In the C(τ) expression the numerator for SASE

case can be evaluated to be
〈∫

dω dP
dω e−iωτ

〉
SASE

=

gAgS
ργRmc2

2π

√
2πω1σν0e

z/LG e−ω
2
1
σ2

ν0
τ2/2 and for SeSASE

case〈∫
dω

dP

dω
e−iωτ

〉
SeSASE

=

〈∫
dω

dP

dω
e−iωτ

〉
SASE

×⎧⎪⎪⎨⎪⎪⎩
1 + ρ2 |H |2−
ρ |H | e−σ2

ν0
φ2/2 (eiΦ−σ2

ν0
(ω1τ−φ)2/2 + e−iΦ−σ2

ν0
(ω1τ+φ)2/2)⎫⎪⎪⎬⎪⎪⎭

(15)

The correlation function can now be derived

C(τ)SASE = e−ω
2
mσ2

ν0
τ2/2 for SASE case, and for SeSASE

case shown in Eq. (16) below. The correlation or co-

herence time, defined as tcoh ≡
∫
dτ |C(τ) |2, can also be

computed tSASE
coh

=
√
π

ω1σν0
for SASE case and for SeSASE

case shown in Eq. (17). Here we remark that the result for

SASE case is similar to the property of the chaotic light

while there is an additional factor for SeSASE case.

C(τ)SeSASE = C(τ)SASE
⎡⎢⎢⎢⎢⎢⎣
1 + ρ2 |H |2 − ρ |H | e−σ2

ν0
φ2/2 (eiΦ−σ2

ν0
(ω1τ−φ)2/2 + e−iΦ−σ2

ν0
(ω1τ+φ)2/2)

1 + ρ2 |H |2 − 2ρ |H | e−σ2
ν0
φ2/2 cosΦ

⎤⎥⎥⎥⎥⎥⎦ (16)

tSeSASEcoh = tSASEcoh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 + ρ2 |H |2

)2
− 4ρ |H |

(
1 + ρ2 |H |2

)
e−σ

2
ν0
φ2/4 cosΦ + 2ρ2 |H |2

(
1 + e−σ

2
ν0
φ2

cos 2Φ
)

(
1 + ρ2 |H |2 − 2ρ |H | e−σ2

ν0
φ2/2 cosΦ

)2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

SUMMARY AND OUTLOOK
In this paper we have formulated the slippage enhanced

SASE (SeSASE) high-gain FEL process with inclusion of

by-pass magnetic chicanes and extension to a general N

undulator-chicane moduli. The analysis takes the finite en-

ergy spread of the electron beam and the nonzero momentum

compaction of the chicane into consideration. The evolution

of spectral bandwidth of SeSASE is derived and expressed in

a combined form with that of usual SASE case. The effects

of finite beam energy spread and non-isochronisity are also

explicitly expressed. These analytical expressions may be

used to improve or optimize the SeSASE performance. Fur-

ther investigation on improving the SeSASE performance

with varying bunch current density is ongoing.
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