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Abstract
With a variable charge range of 0.1 nC - 100 nC, the Ar-

gonne Wakefield Accelerator facility (AWA) has a unique

and dynamic set of operating parameters. Adjustment of the

optics and occasionally the rf phases is required each time

the bunch charge is changed. Presently, these adjustments

are done by the operator during each experiment. This is

time consuming and inefficient, more so at high charge and

for complex experimental set ups. In an attempt to reduce the

amount of time spent adjusting parameters by hand, several

optimization methods in simulation are being explored. This

includes using the well-known Genetic Algorithm (NSGA-

II), incorporated into OPAL-T. We have also investigated a

model-based method and novel structure based algorithms

developed at Argonne National Laboratory (ANL). These

optimization methods will be implemented to improve op-

erations at the AWA. Simulation results will be compared

to measured beam parameters at the AWA, and one or more

optimization methods will be selected for use in guiding

operations in the future.

AWA FACILITY
The AWA Facility houses two rf photoinjectors, both op-

erating at 1.3GHz. A large range of experiments are per-

formed at various charge levels, and several methods for

simulating the beam lines have been used. Recent experi-

ments include emittance exchange [1], structure tests [2],

thermal emittance measurements [3], and Two Beam Accel-

eration (TBA) [4]. Simulation codes used for these and other

experiments at the AWA include: PARMELA [5], GPT [6],

ASTRA [7], and more recently OPAL [8]. The latter is the

code used for all simulations in this study. We also take

advantage of the computing resources provided by the Labo-

ratory Computing Resource Center (LCRC), at ANL. Access

to the Blues, and recently installed Bebop clusters has sig-

nificantly increased simulation productivity by providing

the capability to run all simulations in parallel, and large

optimization cases on many cores.

MODEL BASED METHOD
Last year, we began with the optimization of the front

end of the high charge photoinjector at the AWA. A charge

of 40 nC was chosen to target the needs for upcoming TBA

experiments at AWA. The simulation model included the

gun, two solenoids, and six accelerating cavities, as shown

in Fig. 1. The quadrupoles and bending elements were not

included in this first effort, they will be included later. We

choose ten variables for the optimization parameters: laser

radius, laser full width half maximum, solenoid strength
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(S2), gun cavity phase, and the six accelerating cavity phases
(φL1 − φL6 ).

The objective was to get an optimal combination of small

emittance, and short bunch length at the entrance of the

quads. We choose to use a local optimization method that is

freely available in the NLOPT package [9]. Bounded Opti-

mization By Quadratic Approximation (BOBYA), is a model

based and derivative-free method that builds a quadratic us-

ing the results of simulation evaluations. The next point to

evaluate is chosen by minimizing the quadratic. The initial

probe of the parameter space was done with 1,000 random

simulations. Simulations with the best emittance and bunch

length were chosen as starting points for ten BOBYQA runs.

These local optimization runs were carried out until they

converged. The results from all ten runs were used to form

a Pareto front comparing transverse emittance and bunch

length. Details of this work were presented at IPAC’17, and

can be found here [10].

The initial results were promising, and attempts to mea-

sure several points on the Pareto front took place. Exper-

imentally, some of the parameter values were found to be

outside the normal operating conditions at the AWA. Using

this experience, a second round of optimization was done

using the same procedure and method as outlined in [10].

The boundaries for the second round of optimization work

can be found in Table 1. Note that φL = [φL1, . . . , φL6 ].

Table 1: Parameter Bounds for Linac Optimization

Variable Range Unit
Solenoid Strength 50 ≤ S2 ≤ 440 amps

Phase of Gun −45 ≤ φg ≤ 45 degrees

Laser Radius 3.5 ≤ R ≤ 9 mm

Laser FWHM 1.5 ≤ T ≤10 ps

Cavity Phase −40 ≤ φL ≤ 40 degrees

The parameter values of the new Pareto front in Fig. 2

were analyzed, and several key points were learned from

this work. First, it is clear that varying the laser radius is

unnecessary for high charge simulations. All points on the

Pareto front had a laser radius of 9mm, the maximum value

for this parameter. Due to the strong space charge forces at

the AWA, it is beneficial to let the laser radius be as large as

possible. This mitigates space charge and improves the emit-

tance. Ongoing and future high charge optimization work

will exclude the laser radius as an optimization parameter.

Second, it was clear that the phase boundaries were also

too large. None of the gun phases were positive. An upper

bound of φ = 0◦ will be used in the future. Some of linac
phases were positive, but very few. Five out of ten local

optimization runs had no positive linac phases. Four out
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Figure 1: Partial beam line layout at the AWA.
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Figure 2: Pareto front for adjusted variable bounds at 40 nC.

of ten local optimization runs had only one positive linac

phase(φL6 ), and only two out of the ten runs had two or
three positive linac phases (φL4 − φL6 ). Therefore, the upper
bounds for φL1 − φL3 can also be set to 0

◦.

The last lesson learned from the initial model based work

deals with the bunch length and energy spread. As stated

earlier, every gun phase was negative as were φL1 and φL2 .
These negative phases are reducing the energy spread in

the bunch. This result is expected based on work by others

[11], and is called velocity bunching. Validation of a known

behavior adds credibility to the the model based work.

GENETIC ALGORITHMS
Genetic Algorithms (GAs) have been used successfully

for over two decades in the accelerator physics community.

They are used to tackle large multiobjective optimization

problems on wide variety of machines. A nice review of

work done in the field using GAs can be found here [12]. In

general, this class of algorithms aims to mimic the natural

selection process often seen in biology. In this way, there

are several steps that most GAs follow:

1. Start with a finite population (simulation evaluations).

This is the first generation.

2. Decided which individuals (simulations) in the popula-

tion are the best based on a selection criteria.

3. Mix the best individuals to generate new individuals

(new generation).

4. Repeat many times.

There has been much research on how to implement

these steps, and what types of selection and mutation cri-

teria should be used. A widely used implementation is the

NSGA-II [13] method. This is also the algorithm built into

the simulation code OPAL, which was the code of choice for

the initial optimization work. It was decided to take advan-

tage of the built in optimizer for verification of the model

based method and future work.

To verify the model based method, a low fidelity model of

the photoinjector was used to do a quick comparison. The

number of particles and grid size was reduced to shorten

the simulation time to two minutes. GAs require several

thousand simulations to converge. Reduction in the fidelity

allowed us to complete a comparison using a reasonable

amount of computing resources and within one weeks time.

The optimization variables (Table 1) and objectives are these

same as those given in the previous section, with one impor-

tant difference. The boundaries were reduced based on the

information learned in the first round of optimization.

In total, 2,393 simulations (from the 1,000-point sample

plus 1,393 points of BOBYQA optimization runs) were used

to generate the model based approximate Pareto front. This

approach required approximately 80 core-hours of compu-

tation. We compared this with similar fronts generated by

the GA. With 128 simulations in each generation, the GA re-

quired 3,200 simulations (107 core-hours) to reach the 25th

generation, and 64,000 simulations (2,133 coure-hours) to

reach the 500th generation. Comparison of the three Pareto

fronts is shown in Fig 3. As expected by the "no free lunch"

theorem, both methods give acceptable results, with only

the total simulation time being the difference.

The next round of optimization will include the four

quadrupoles, kicker, and septum shown in Fig. 1. This work

will support upcoming TBA experiments at the AWA.

FUTURE WORK: NOVEL METHODS
In the following months, we plan to continue our work

by investigating novel optimization methods and comparing

their efficiency and precision. We will take advantage of the

open source Python library libensemble:
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Figure 3: Comparison of model based optimization and the

GA implemented in OPAL at 40 nC.

https://github.com/Libensemble/libensemble

which is being developed at ANL. This framework allows for

massively parallel ensemble simulations in combination with

a mechanism for easily interchanging optimization methods.

We will work to deploy Asynchronously Parallel Optimiza-

tion Solver for finding Multiple Minima (APOSMM). This

multistart algorithm considers all results from previously

evaluated simulations when determining where to start or

continue a local optimization run [14]. This allows for an effi-

cient search for a global minimum. This method has already

been tested (with success) on problems where derivatives

are unavailable, as is the case in many non-linear accelerator

physics problems.

CONCLUSION
Photoinjector optimization projects are ongoing at the

AWA. Two optimization methods have been used with suc-

cess: BOBYQA and NSGA-II. In the future, novel optimiza-

tion methods developed at ANL will be tested. The first

of which will be APOSMM. All optimization efforts aim

to improve operating conditions at the AWA and aid in the

completion of the beamline designs needed for upcoming

experiments.
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