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INTRODUCTION
We consider the numerical evolution of the Bloch equa-

tions of Derbenev and Kondratenko (DK) for the polarization
density in high-energy electron storage rings, such as the
proposed FCC-ee and CEPC. Equilibrium spin polarization
is well characterized by the DK formulas for current rings
(see [1] and [2]), but deviations may be important at the high
energies we have in mind. We believe these Bloch equations,
in three degrees of freedom (DOF), derived in [3] give a
more complete description at all energies. The equations
are a system of three coupled linear partial differential equa-
tions for the three components of the polarization density
and include the spin flip polarization effect. Following [4]
we formulate the equations in action-angle variables and
approximate the Fokker-Planck terms. Our goal is to inte-
grate these equations numerically in order to approximate
the equilibrium and compare with the DK formulas.

For 3 DOF the polarization density has 6+ 1 independent
variables. For simplicity, suppose that each of the space-like
variables has been discretized on a grid with N grid-points,
then the computational cost of each time step will scale no
better than O(N6). The presence of parabolic terms in the
governing equations necessitates implicit time stepping and
thus solutions of linear systems of equations. For a fully
coupled problem this will bring the per time step cost to
O(N6q), with 1 ≤ q ≤ 3, depending on the algorithms used
for the linear solve. However, only algorithms with q ≈ 1
are feasible (for Gaussian elimination q = 3). Fortunately,
as we outline below, the structure of the equations allow us
to group the space-like variables into two groups resulting
in a cost that, to leading order, scales as O(M N3q).

In the next section we present the full and the reduced
Bloch equations and the underlying physics. Then we discuss
the details of the numerical algorithm outlined above and the
issue of complexity in higher dimensions. Finally we present
two numerical results showing a depolarization calculation
in 1DOF and spectral convergence in a 2DOF example.

BLOCH EQUATION
In a semiclassical probabilistic description of an electron

bunch the spin-orbit dynamics is described by the density
matrix function (or spin-1/2 Wigner function) ρ written as

ρ(t; z) = f (t; z)
1
2

(
I2×2 + ~σ · ~Ploc (t; z)

)
, (1)

where f is the classical phase-space density normalized by∫
f (t; z)dz = 1 and ~Ploc is the local polarization vector.
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The polarization density ~η ≡ f ~Ploc . Here z = (r, p) where
r and p are the position and momentum vectors of the phase
space and t is the time. Also, ~σ is the vector of the three Pauli
matrices. Thus f = Tr[ρ] and ~η = Tr[ρ~σ]. The polariza-
tion vector ~P(t) of the bunch is ~P(t) =

∫
~η(t, z)dz. When

the particle motion is governed just by a Hamiltonian, as in
the case of protons, the phase-space density is conserved
along a trajectory so that the polarization density obeys the
T-BMT equation along the trajectory. However, if the par-
ticles are subject to noise and damping due to synchrotron
radiation, the evolution of the density of particles in phase
space is more complicated. In fact, neglecting collective
effects and after several other approximations, ρ evolves via

∂t f = LFP (t, z) f , (2)
∂t ~η = LFP (t, z)~η + ~Ω(t, z) × ~η + A(t, z)~η

+~g(t, z) f + ~L(t, z) f , (3)

where × denotes the vector product. The explicit forms of
LFP, ~Ω, A, ~g and ~L are given in [3]. The linear second-order
partial differential operator LFP is commonly used for elec-
tron synchrotrons and storage rings [5, Section 2.5.4], [6].
This Fokker-Planck operator takes into account the effects of
the external fields of the accelerator and of the synchrotron
radiation on the orbital motion of the particle. The cross
product term with ~Ω takes into account the Thomas-BMT
spin precession effect. The terms A~η, ~g f and ~L(θ, z) f take
into account spin flips due to the Sokolov-Ternov formula. In
particular A covers the Sokolov-Ternov effect and its Baier-
Katkov correction. In fact (3) shows how to include orbital
motion and thus is a generalization of the BKS equation [7]
from a single orbit to the full phase space. As usual, since it
is minuscule compared to all other forces, the Stern-Gerlach
effect from the spin onto the orbit is neglected in (2). We
call the three equations in (3) the full Bloch equations. This
terminology reflects the analogy with equations for magne-
tization in condensed matter [8]. To make the presentation
of our discretization of (3) succinct we consider a reduced
model with the spin flip terms neglected

∂t ~η = LFP (t, z)~η + ~Ω(t, z) × ~η. (4)

We call (4) the reduced Bloch equations and they will be the
focus here. For a classical derivation see [9]. The reduced
Bloch equations take care of the depolarization effects due
to the orbital motion.

The equations (2), (3), (4) can be derived from QED,
followed by making the semiclassical approximation of the
Foldy-Wouthuysen transformation of the Dirac Hamiltonian
and finally making a Markov approximation.
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For a numerical discretization of (2)-(4) it is more efficient
to pose the equations in polar coordinates, (rk, φk ) (trans-
formed by first going to action angle variables, [4]) and to
parametrize time by the angular azimuth θ. The reduced
Bloch equations (4) then become

∂θ ~η = LFP~η +A(r1, ..., rd, φ1, ..., φd, θ)~η. (5)

Here the coupling matrix A is skew-symmetric and defined
by A12 = −Ω3,A13 = Ω2,A23 = −Ω1, and

LFP =
L
2π

d∑
l=1

{
−bl

∂

∂φl
+

al
rl

∂

∂rl
r2
l +

al
2
∆rk,φl

}
, (6)

~Ω = ~Ω0(θ) +
d∑
l=1

rl[~ΩC
l (θ) cos φl + ~ΩS

l (θ) sin φl]. (7)

Here d ∈ {1, 2, 3} is the number of degrees of freedom to be
considered, ∆r,φ is the Laplacian in polar coordinates and L
is the length of the design orbit. For a complete derivation
of (6)-(7) with underlying assumptions see [4].

The polarization vector ~P(θ) of the bunch at time θ is

~P(θ) =
∫

f (θ, z) ~Ploc (θ, z)dz =
∫

~η(θ, z)dz, (8)

where z = (r1, ..., rd, φ1, ..., φd) and the polarization is
| ~P(θ) |. This is to be compared with the DK formulas [2]
elsewhere.

NUMERICAL ALGORITHM
Consider (5) with d = 1,

∂θ ~η =
L
2π

{
−b

∂

∂ϕ
+

a
r
∂

∂r
r2 +

a
2
∆r,ϕ

}
~η +A(r, ϕ, θ)~η, (9)

posed on a disk r ≤ rmax, ϕ ∈ [0, 2π]. The boundary con-
ditions are periodic in ϕ and we take rmax large enough
to impose homogenous Dirichlet boundary conditions at
r = rmax, since the initial condition has compact support.

We seek approximations to ~η on a Chebyshev grid in r
and a uniform grid in ϕ,

ri = − cos
(
πi
nr

)
, i = 0, . . . , nr,

ϕ j = j 2π
nϕ
, j = 1, . . . , nϕ .

and expand it in a Fourier series in the ϕ direction:
~η(ri, ϕ j, θ) ≈

∑nϕ
k=1 η̂k (ri, θ)e−ıkϕ j .

For the kth Fourier mode we determine η̂k (r, θ) from

∂η̂k
∂θ
=

L
2π

a
(
2η̂k +

1
2

(2r +
1
r

)
∂η̂k
∂r
+

1
2
∂2η̂k

∂r2

−ıkbη̂k −
ak2

2r2 η̂k

)
+ [FFT[A(r, ϕ, θ)~η]]k . (10)

Here [FFT[ f g]]k represents the discrete Fourier transform
of the kth Fourier mode of the convolution f̂ ∗ ĝ.

Now denote by ûk (θ) the grid function on the r grid for
a fixed mode, i.e. ûk (θ) = [ûk (r0, θ), . . . , ûk (rnr , θ)]T , de-
scribing one of the three components of η̂k . Then for each
component in (10) we have

dûk
dθ
= {C1 + C2(k)} ûk + Fu

k (~η). (11)

Here C1 and C2(k) are matrices representing the mode in-
dependent and mode dependent components of the Fokker-
Planck operator

C1 =
L
2π

a
(
2I + (R +

1
2

R−1)D1 +
1
2

D2

)
,

C2(k) =
L
2π

(
−ıkbI − ak2(R−1)2

)
,

and Fu
k

represents the kth mode of the Ω coupling term as
well as contributions from boundary conditions in r. Fur-
ther, I is the identity matrix, R = diag(r0, . . . , rnr ), and D1
and D2 are spectral differentiation matrices. The entries of
the differentiation matrices are found by the techniques for
constructing finite difference approximations of any order of
accuracy, for any order of the derivative and on general grids
described by Fornberg in [10]. To be precise, the coefficients
are computed using a numerically stable recursion relation
derived from the Lagrange interpolant associated with the
grid points (see also the subroutine weights.f provided
in [10]).

To evolve in time we use a second order splitting scheme,
see e.g. [11]. Let ûν

k
= ûk (ν∆θ) then, for each mode, we

compute

û∗k = 2ûνk −
1
2

ûν−1
k + ∆θ

[
2(Fu

k (~ην) − Fu
k (~ην−1)

]
, (12)

and solve
[
3
2

I − ∆θ{C1 + C2(k)}
]

ûν+1
k = û∗k . (13)

Thus at each step we compute ~ην+1 given ~ην and ~ην−1. For
d = 2 and d = 3 the algorithm stays the same.

The dominating cost in the step (12) is the computation
FFT[A(r, ϕ, θ)~η], for each gridline in r using the fast Fourier
transform. The cost of this is O(nrnϕ log nϕ ). As indicated
in the introduction, the cost of the solve in the step (13)
depends on the choice of algorithm but can always be split
into an initial cost (e.g. LU-factorization) and a solve cost
(e.g. back and forward substitution). Ignoring the startup
cost, which can be amortized over many time steps, the cost
per time step is that of nϕ solves of size nr , i.e. O(nϕnq

r ).
For 3 DOF the complexity estimate becomes

C = O((nrnϕ )3 log n3
ϕ ) + O(n3

ϕn3q
r ).

Assuming that nr = nϕ = N we find that for N = 50 and
q = 1, 4/3, 2 the cost C = 2 · 1011, 9.6 · 1011 and 2 · 1015,
respectively.
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As a single modern processing unit may be able to carry
out O(108−109) arithmetic operations per second it appears
plausible that an efficient parallel implementation can result
in time-per-time step on the order of one to several seconds
for q = 4/3.

Note that there are several modern solution techniques,
like the Hierarchical Poincaré-Steklov operator technique by
Martinsson [12] that can reach q ≈ 1 for spectrally accurate
discretizations.

NUMERICAL RESULTS
Example 1: A Single Resonance Model (SRM) in 1DOF
We now discuss the following SRM for which d = 1
and where ~Ω = (σ0 + σ1r cos ϕ + σ2r sin ϕ)(0, 0, 1)T .
Here the reduced Bloch equations (5) can be solved ex-
actly [13]. For example if the initial condition on ~η is chosen
as ~η(r, ϕ, 0) = (1/π) exp(−r2)(1, 0, 0)T then the polariza-
tion at time θ reads as

| ~P(θ) | = exp
{
π2

(
σ2

1 + σ
2
2

)
(
a2 + b2)2

(
2
(
a2 − b2 − aθ

(
a2 + b2

))
+ 2e−aθ

(
(b2 − a2) cos(bθ) + 2ab sin(bθ)

))}
. (14)

This example was used to verify the spectral convergence of
our 1DOF method outlined above (see also Example 2). In
Fig. 1 we show the polarization | ~P(θ) | obtained by integrat-
ing our numerical solution (see (8)). The result is very close
to the exact polarization of (14), within the error we expect.
In addition, the figure shows the effect of the transitional
terms in (14) as well as the subsequent exponential decay of
the polarization with the depolarization time τdep defined
by τ−1

dep
=

2aπ2 (σ2
1+σ

2
2 )

a2+b2 .
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Figure 1: Polarization in SRM from numerical solution.

Example 2: Spectral convergence for 2DOF
To confirm the spectral convergence in r1 and r2 we evolve
(5) in 2DOF with the initial data taken to be the exact solution

(obtained for constant ~Ω)

~η(θ,~r, ~φ) = exp(Aθ) ~̃η(θ,~r, ~φ). (15)

at θ = 0. Here each component of ~̃η satisfies ∂θ f = LFP f
which can be solved in terms of the transition probability
density for a Gaussian process with easily determined mean
and covariance matrix. Moreover, it has an equilibrium so-
lution π−2 exp(−(r2

1 + r2
2 )) making it a good test case for the

numerical method. To be precise, the errors displayed in
Fig. 2 are the maximum deviation from the exact solution
~η(θ,~r, ~φ) = π−2 exp(−(r2

1 + r2
2 )) exp(Aθ)(1, 1, 1)T , taken

over all grid points and all the variables at θ = π/4 and
with ~Ω = (0, 0, 1)T and a1 = b1 = a2 = b2 = 1. The results
clearly show the spectral accuracy of the spatial discretiza-
tion as well as the second order accuracy of the temporal
discretization. A similar plot was obtained for 1DOF in
Example 1.

15 20 25 30 35 40 45 50
10

-8

10
-6

10
-4

10
-2

Figure 2: Convergence for 2DOF.

DISCUSSION AND NEXT STEPS
We are preparing an extended version of this brief note

for an archival journal which will complete the work on the
reduced Bloch equation of (5) in 2DOF. An important aspect
will be a more detailed discussion of the algorithm. The
codes will be made available in a repository. A goal is to
make our work easily reproducible. Next we will incorporate
the spin flip by considering the full Bloch equations and
do a careful study of the depolarization and polarization
effects for the simple lattice incorporated by the (al, bl) in
(6). This will include depolarization and polarization times
and equilibrium. We will then study a more realistic lattice
in the 2DOF case and begin the 3DOF work, where a parallel
algorithm will surely be important/necessary.
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