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Abstract

In this paper we propose a symbolic representation of the

solutions of the equations of evolution of dynamical sys-

tems in the framework of matrix formalism and Lie algebra

for a number of elements of the accelerator (in particular,

quadrupoles and octupoles) up to the 4-th order. The con-

sidered solutions present so-called Lego objects, which are

included in the general scheme of the representation beam

dynamics and used for its preliminary and computer model-

ing.

INTRODUCTION

Currently, most of the programs used for preliminary and

computer modeling of accelerators are based on numerical

methods. The most widely used packages are MAD [1],

Cosy Infinity [2], MaryLie [3] and Comsol Multiphysics [4].

MAD, COSY Infinity and Comsol Multiphysics use phase

variables to describe the beam using trajectory analysis.

However, the problems of modeling involve the selection of

optimal parameters for the systems under consideration, so

the software to solve such problems should allow a quick

change the parameters of the system.

Numerical methods can’t cope with such a task, because

any change in the parameters leads to a complete recalcula-

tion of the trajectories for all considered particles (1012−1016

in beam). In addition, when we talk about cyclic systems,

such as an accelerator ring, the calculations increase in pro-

portion to the number of turns. Thus, for this problem,

numerical methods will become very time-consuming.

The Marylee package, though based on symbolic meth-

ods, does not support one more prerequisite for providing

the fastest solution to the optimization problems of complex

systems – the Lego-object approach [5]. The ideology of

this approach lies in the fact that the contribution of each

element included in the finite system (for example dipoles,

quadrupoles and octupoles, etc.) is considered indepen-

dently from the rest of the system. The resulting solution for

one or more elements can be substitute in the "right place".

This provides the possibility of easy changes and replace-

ment of elements in the simulation of the final nonlinear

dynamic system. This work is an illustration of the applica-

tion of a new approach to solving problems of preliminary

and computer modeling of nonlinear dynamics based on sym-

bolic computation, supported the ideology of Lego-objects,
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as well as allowing for taking into account the symplecticity

of the system and is not limited only to trajectory analysis.

THEORETICAL BASIS

The approach uses a matrix formalism combined with

the Lie algebra [6]. Due to matrix formalism, it becomes

possible to consider the whole beam at the same time, as

well as to move from the consideration of coordinates and

impulses to the consideration of more convenient for the

analysis of quantities.

We should note that although character calculations are

time-consuming and result in cumbersome formulas, we

should realize this operation only once for each control object

in the system. Using this approach, we can not only create

the database with Lego-objects but also use it in the process

of modeling the systems under consideration. We also can

solve the real task of optimization is quickly enough by

linking the corresponding Lego-objects and by a setting of

the necessary parameters for this objects.

In this section we describe a schematic description of the

theory of constructing a solution of a system of ordinary

differential equations in an explicit form using perturba-

tion theory. Consider the equation of motion in the form

dX/ds = F(X, s), F(0, s) = 0, where X is a vector of phase

moments and the arbitrary analytic function F(X, s) is de-

fined within a neighborhood of X = 0, X ∈ Rn and is mea-

surable at s ∈ Rn. The following definition for the vector of

phase moment is necessary: X[k]
= X ⊗ ... ⊗ X
︸       ︷︷       ︸

k times

is a vector of

phase moments of the k-th order, representing the k-th Kro-

necker degree of the phase vector X. Further P1k(s) is a ma-

trix of dimension (n× d[n, k]), where d[n, k] =

(
n + k − 1

k

)
,

the elements of which are the derivatives of the components

of the vector-valued function F(0, s) = 0 of the k-th or-

der. Note that P1k(s) are matrices which include the control

parameters of the system. Thus, taking into account the

assumption that F(0, s) = 0, we can write:

dX(s)

ds
=

∞∑

k=1

P
1k(s)X[k](s), X(s0) = X0 (1)

The solution of such a nonlinear system in the form of two-

dimensional matrices, which can be calculated according

to the algorithm presented in [7], can be represented in the

form:
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X(s |s0) =

∞∑

k=1

R
1k(s |s0)X

[k]

0
. (2)

The matrices R1k(s0) contain coefficients for the corre-

sponding orders of the elements of the vector X0. A finite

cut-off of this infinite series can be defined which follows

from the properties of the object under consideration.

Multi-rotation in cyclic machines leads to the need to pre-

serve the integrals of motion: the law of conservation of

energy, symplecticity and etc. The requirements for modern

cyclic systems lead to the necessity of using nonlinear con-

trol fields up to some k-th order, which in turn leads to a vi-

olation of the symplectic property. This is a critical moment

for this similar of tasks. In terms of the matrix formalism,

the symplecticity condition can be ensured using the Jacobi

matrixM(X, s |s0) of the transformation M(X, s |s0; H) of the

dynamical system as follows:

M
∗(X, s |s0)J(X)M(X, s |s0) = J(X), (3)

M(X, s |s0; M) = M(X, s |s0) =
∂M(X, s |s0; H) ◦ X

∂X∗
,

where H is the Hamiltonian of the system.

Symplectic property can be restored using various meth-

ods for trajectory-based modeling, in particular, the methods

of canonical transformations [8]. This approach is used for

each individual trajectory of particles (1012−1016) and needs

a lot of time. We propose making necessary corrections not

in the trajectory, but in the matricesR1k(s0). Our approach is

based on the correction of the elements of the transformation

matrices R1k(s0) up to the desired order of nonlinearity [9].

As a result, the amount of computations performed much

less than on-trajectory analysis. Let us note that the simpli-

fication procedure must be performed sequentially for all

orders (from 1 to the k-th), because the elements of each

current transformation matrix have a relationship with the

elements of the previous ones.

SOLUTIONS OF SEVERAL

ELECTROMAGNETIC ELEMENTS

In this paper, are presented solutions obtained for some

basic electromagnet elements used in the construction of

particle accelerators: the quadrupoles and the octupoles.

Hamiltonians of these elements were obtained at [7]:

Hamiltonian for quadrupole

H =
1

8
(P2

x + P2
y)

2
+

K ′
1

2
x2
yPy −

K ′′
1

48
(x2
+ 6x2

y
2 − y

4),

Hamiltonian for octupole

H =
1

8
(P2

x + P2
y)

2
+

K3

24
(x2 − 6x2

y
2
+ y

4),

where Ki = (q/cP0)A1i , A1i - vector potential, P0 - momen-

tum of an equilibrium particle, q - particle charge, c - speed

of light.

The systems of differential equations describing to the

dynamics of the elements under consideration have the form:

systems for quadrupole




x ′(t) = 1
2

Px(P
2
x + P2

y),

P′
x(t) = −xyPyK ′

1
+

1
48
(2x + 12xy2)K ′′

1
,

y
′(t) = 1

2
Py(P

2
x + P2

y) +
1
2

x2
yK ′

1
,

P′
y(t) =

1
48
(12x2

y − 4y3)K ′′
1
,

(4)

systems for octupole





x ′(t) = 1
2

Px(P
2
x + P2

y),

P′
x(t) = − 1

24
(2x + 12xy2)K3,

y
′(t) = 1

2
Py(P

2
x + P2

y),

P′
y(t) = − 1

24
(12x2

y − 4y3)K3.

(5)

The solutions obtained by the considered method for visu-

alization of the representation in the form of phase portraits

after some simplifications. Recall that the reference tra-

jectory is usually located on the plane. The procedure of

simplifying is carried out by correcting the least important

elements of the matrix R1k(s0) (for less distortion of the

overall result). We corrected the coefficients for y and Py

to obtain the solutions presented in this work. Let us now

turn to an illustration of the solutions. The phase portraits of

quadrupole and dipole solutions are constructed for identical

initial parameters:

x0 = 0, y0 = 0, Px0 = 1, Py0 = 1. (6)

Figure 1 shows the phase portraits of the quadrupole so-

lution for different parameter values. As can be seen from

Fig. 1, when K ′
1
= 0 and K ′′

1
= 2 (Fig. 1a), the phase portrait

is closed and has the circle shape. The change K ′′
1

leads

to a gap at phase portrait (Fig. 1b), the variation of K ′
1

to a

change in shape to a spiral (Fig. 1c).

Phase portraits of the octupole solution are represented in

Fig. 2. By varying parameter K3, we can conclude that for

K3 = −1, the phase portrait for the octupole has the circle

shape (Fig. 2a), change K3 leads to changes shape to a spiral

(Fig. 2b).

Let us note that the solutions illustrated above are obtained

in symbolic form, which allows using them as required the

case of changing the system parameters. For the most conve-

nient use, we plan to put them in the corresponding database

with Lego-objects. Working with the database of such ob-

jects is carried out according to the following scheme (see

Fig. 3).

The simulated accelerator is presented using free spaces,

dipoles, quadrupoles, octupoles, and other control elements.

For each of these objects, one can calculate the correspond-

ing solutions and place in the appropriate database in ad-

vance (as a family of Lego-objects).The general control sys-

tem defining the evolution of a system is made by a combina-

tion of objects from the database. To solve a specific problem,

it is only necessary to substitute the values of the control

elements parameters and perform the necessary numerical
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a) b) c)

Figure 1: Phase portraits of the quadrupole symplectic solution with different parameters: a) K ′
1
= 0, K ′′

1
= 2, b) K ′

1
= 0,

K ′′
1
= 3, c) K ′

1
= 0.4, K ′′

1
= 2.

a) b)

Figure 2: Phase portraits of the octupole symplectic solution with different parameters: a) K3 = −1, b) K3 = 0.

Figure 3: The diagram illustrates the operation of the Lego-

objects database.

calculations and obtaining solutions for the simulated sys-

tem.

CONCLUSION

In this paper, was submitted a method for symbolic solv-

ing differential equations of evolution of dynamical sys-

tems in the matrix framework and Lie algebra paradigm for

quadrupole and octupole up to 4-th order. As an illustration

of the results of the approach, we present phase portraits

of solutions for quadrupole and octupole with a brief anal-

ysis. We note that all solutions can be obtained in some

symbolical forms, which allows us obtaining the numerical

solutions for varying parameters on demand. The resulting

symbolic solutions will be placed in the special database (for

Lego-objects) to be able to combine objects and obtain final

solutions depending on the simulated accelerator scheme.

This database is planned to be used for modeling within the

framework of the NICA accelerator project.
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