
SIMULATION CODE DESIGN FOR THE INTERPRETED LANGUAGE
USING THE COMPILED MODULE ∗

Kei Fukushima†, Takashi Yoshimoto, Zhengqi He‡, Michael Davidsaver, Tong Zhang,
Guobao Shen§, Masanori Ikegami, FRIB, Michigan State University, MI 48824, USA

Ji Qiang, LBNL, Berkeley, CA 94720, USA

Abstract
We are planning to use two types of the accelerator sim-

ulation codes for FRIB (Facility for Rare Isotope Beams).
One is the linear envelope tracking code “FLAME” for fast
simulations. FLAME can calculate the FRIB-linac beam
envelope within an order of ms. This is useful in systematic
surveys, wide range optimizations and so forth. This code,
written in C++, was designed with Python interface from the
beginning. On the other hand, “Advanced-IMPACT” is the
particle tracking code dedicated for precise and realistic cal-
culations, which can simulate the particle losses, nonlinear
and space-charge effects. This code is refactored from the
Fortran code IMPACT-Z developed in LBNL. Both codes
provide the compiled modules for Python to support flexible
inputs and direct outputs management in memory. In other
words, they can be directly connected to the modern scien-
tific tools through the Python interface without delay in the
data transport. In addition, these modules can accomplish
the interactive simulation processes without losing compu-
tational efficiency. We report the knowledges applicable for
other accelerator simulation codes among those obtained
through these developments and designs.

INTRODUCTION
Numerical simulation for accelerator plays important role

in the beam study, and it is used for various purpose like
systematic survey, parameter optimization, design study and
so forth. On the other hand, most of simulation codes provide
a compiled executable file and its input/output data are put
on the disk storage. Thus, in the case of user wants to define
input parameters by using some formulations, user need to
calculate the value outside of the code, and then write the
value into the input file. If the input parameter is recursive
to the previous simulation results like optimizations, user
need to access both input and output files for every iteration.
In this case, the disk access speed is depend on the data
size but slower than dynamic memory access, and the user-
made application becomes complicated. Interpreted and
interactive language is able to communicate the input/output
data on dynamic memory, but if whole code is written in
this type of language, the computational speed is limited.

∗ Work supported by the U.S. Department of Energy Office of Science
under Cooperative Agreement DESC0000661.
† fukushim@frib.msu.edu
‡ Present address: RIEKN Brain Science Institute, Wako, Saitama 351-

0106. Japan.
§ Present address: Argonne National Laboratory, Argonne, IL 60439, USA.

To solve these issues, we can provide both the compiled
module which contains the core part of the simulation code
and the interpreted interface. Hereby, user can keep compu-
tational efficiency and use flexible input.

CODE DESIGN
Nowadays, interpreted language “Python” is used

widely in academic purpose due to its plentiful scientific
packages [1]. We have developed two accelerator simulation
codes for FRIB (Facility for Rare Isotope Beams) operation
and commissioning, and both codes provide compiled
Python package for users. In both cases, the software
directory tree is designed like,

software_name/
source/
python/

package_name/

source directory contains the physics part of the simulation
code, and python directory contains the codes for the
compiled Python module and the interface. The build is
managed by using CMake, and the structure of the build
directory is,

build/
bin/
lib/
python/

package_name/

where bin directory contains the executable file, lib direc-
tory contains the core library including the physics part for
both the executable file and compiled Python module, and
python directory contains the module and the interface to
install. Physics part is defined in the core library, and it is
compiled by using general compiler. Off course the differ-
ence between the executable file and Python module is just
interface, thus the simulation results become the same.

In the Python interface, user will use the simulation pro-
cess repeatedly by changing parameters. Therefore, the key
methods for an accelerator simulation interface are “beam
initialize”, “beam tracking”, and “parameter configuration”.
Needless to say, the initial parameters must be input in its in-
terface or defined by the external files, and the beam tracking
method must provide the simulation results.

The user documentation is also important. In these simu-
lation codes, we use the Python Documentation Generator

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK049

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

THPAK049
3327

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



“Sphinx” [2]. Sphinx automatically collects “docstrings” in
Python code and generate the documentation, thus we can
keep the documentation up-to-date easily. Sphinx supports
HTML, latex base PDF, and etc as the documentation format.

Envelope Tracking Code: FLAME
FLAME (Fast Linear Accelerator Model Engine) is de-

veloped by FRIB [3–5]. This code is dedicated for fast
simulation and can calculate the FRIB-linac beam envelope
within an order of ms. The source part is written in C++,
and the compiled Python module is provided by C++.

Remarkable features:

• Envelope tracking with multiple charge states

• Support general lattice elements and asymmetric rf
cavity by using Thin-Lens-Model

• Transfer matrix caching for iterative running

• Python interface (include ipython-notebook)

The main class of FLAME module is Machine(), and
user can use it in Python interface like:

>>> from flame import Machine
>>> M = Machine(open(’FRIB_LS1.lat’, ’rb’))
>>> S = M.allocState({})
>>> obs = range(len(M))
>>> result = M.propagate(S, observe=obs)

where FRIB_LS1.lat is the input lattice file. The memory
space for the beam state is allocated by allocState(), and
the envelope tracking is execute by propagate() method.
Here, user can define the observing point in the lattice by
using observe argument. This is because, in the case of the
envelope tracking simulation, the whole beam data size is
much smaller than the particle tracking simulation. Even
if user stores the whole beam data for every elements, the
data size does not matter. Thus, the propagate() method
returns whole beam data at the observing points defined
by the observe argument, and use can pick up the data
what user wants. propagate() method supports to input
tracking section also:

>>> M.propagate(S, start=3, max=10)

where start is the starting point and max is the number of
propagation steps.

For parameter configurations, Machine() has find()
and reconfigure() methods.

>>> idx = M.find(name=’solenoid_name’)[0]
>>> M.reconfigure(idx, {’B’: 4.5})

Here, find() returns index numbers of the target element
as a list, and reconfigure() make change the element
parameter by using its index number and dictionary style
definition.

Users can therefore assemble their own application by
combining these methods for their research.

Particle Tracking Code: Advanced-IMPACT
IMPACT-z (Integrated Map and Particle Accelerator

Tracking Code) is developed by LBNL [6, 7]. We have
refactored the IMPACT-z as FRIB-branch named Advanced-
IMPACT with keeping its physics equivalence. The original
IMPACT is written in Fortran, the compiled Python module
is generated by using “F2PY” [8].

Remarkable features:

• 3D field data caching for iterative running

• Synchronous phase input for RF cavity

• RFQ element by using 8-term potential

• Python interface (include ipython-notebook)

As I mentioned above, the core part is compiled by using
the general compiler, and the whole computational time is
the same as the original one. The biggest benefit for the
computational speed is the 3D field data caching. In the
case of using many 3D field data for the simulation, the data
loading cost can be the bottleneck of the simulation time.
For the one-time running, this data loading cost is inevitable.
But for the iterative running, the process can reuse the 3D
field data ad cut the loading cost.

The main class of IMPACT module is Sequence, and
user can use it in Python interface like:

>>> from impact import Sequence
>>> sq = Sequence(’FRIB_LS1.in’)
>>> sq.distribute()
>>> sq.run()

Sequence() instance can be constructed with the input
file, and it support the same format as the original IMPACT
input file. distribute() method allocates and generates
the initial beam distribution by using the input file parameter
or substituting particles argument to this method. run()
method executes the particle tracking, and this method sup-
ports to input tracking section also:

>>> sq.run(start=3, end=10)

Once user executes run() method, the simulation result
can be found in methods in Sequence(). As an example:

>>> sq.hxrms(’mm’)
array([3.3121, 4.32432, ..., 1.22332])

where hxrms() returns horizontal rms beam size history
with the input physical unit. Sequence() class supports all
history results provided in the original IMPACT. Unlike the
envelope tracking code FLAME, basic output of IMPACT
is history results of the statistic values, and the whole beam
output is supported by using a flag element.

For parameter configurations, Sequence() class has
search() and conf() methods.

>>> idx = sq.search(name=’solenoid_name’)
>>> sq.conf(idx, {’B’: 4.5})

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK049

THPAK049
3328

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques



Here, search() returns index numbers of the target ele-
ment as a list, and conf() make change the element parame-
ter by using its index number and dictionary style definition.
These methods are designed similarly to FLAME for user
friendliness.

USE CASE
Transverse Matching

By using the Python interface, user can build beam tuning
script easily. For example, in the case of tuning the two
quadrupole strength to adjust the rms beam size by using
Advanced-IMPACT:

>>> import scipy as np
>>> des_xrms = 2.5e-3
>>> des_yrms = 2.5e-3
>>>
>>> def cost(params):
>>> sq.conf(’quad1’, {’B2’:params[0]})
>>> sq.conf(’quad2’, {’B2’:params[1]})
>>> sq.distribute()
>>> sq.run()
>>> dx = sq.hxrms(’pm1’) - des_xrms
>>> dy = sq.hyrms(’pm1’) - des_yrms
>>> return np.sum(np.absolute([dx, dy]))

Here, we defined the cost function by using the difference
between the desired value and the simulation result. Then,
by using the minimize() function in SciPy package [9]:

>>> from scipy.optimize import minimize
>>> minimize(cost, [5.0, -5.0])

where [5.0, -5.0] is the initial parameter for the
quadrupoles.

In this example, the parameter is two dimensions, but
most of the optimizers support N-dimensional parameter for
more complex systems.

Virtual Accelerator
In FRIB, we are developing the virtual accelerator

with switchable simulation codes between FLAME and
Advanced-IMPACT as shown in Fig 1. The virtual acceler-
ator reproduces “EPICS” layer of the real accelerator [10].
Thus the physicist can develop and benchmark the physics
application by using the virtual accelerator, and then use it in
the real accelerator directly. Python has a package for EPICS
channel access also, so the virtual accelerator application
can be closed in Python. That makes reduction of the time
from application design to release.

CONCLUSION
The Python interface for the numerical simulation codes

will benefit both the end user and the application developer.
In this paper, we have shown the code design of both FLAME
and Advanced-IMPACT including the folder structure for

Figure 1: Schematic for virtual accelerator and application.

compiled Python module and the interface. The compiled
module is the best solution for keeping both the data com-
munication flexibility and the computational efficiency. It
can be the next standard for the overall simulation codes.

REFERENCES
[1] Python, https://www.python.org/

[2] Sphinx, http://www.sphinx-doc.org/en/master/

[3] Z. He et al, in in Proc. 28th Linear Accelerator Conf.
(LINAC’16), East Lansing, MI, USA, Sep. 2016, pp. 100-
103, doi:10.18429/JACoW-LINAC16-MOPRC015

[4] FLAME source code repository, https://github.com/
frib-high-level-controls/FLAME

[5] FLAME API documentation,
https://kryv.github.io/FLAMEdoc/

[6] J. Qiang, R. D. Ryne, S. Hbib, and V. Decyk, J. Comput.
Phys., vol. 163 p. 434, 2000.

[7] IMPACT, http://amac.lbl.gov/~jiqiang/IMPACT/

[8] F2PY, https://docs.scipy.org/doc/numpy/f2py/

[9] SciPy, https://www.scipy.org

[10] EPICS, https://epics.anl.gov/

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAK049

05 Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

THPAK049
3329

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


