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Abstract

The nonlinear space-charge effects in high intensity accel-
erator can degrade beam quality and cause particle losses.
Self-consistent macroparticle tracking simulations have been
widely used to study these space-charge effects. However, it
is computationally challenging for long-term tracking simu-
lation of these effects. In this paper, we study a fully sym-
plectic self-consistent particle-in-cell model and numerical
methods to mitigate numerical emittance growth. We also
discuss about a fast alternative frozen space-charge model
that has a potential to improve computational speed signifi-
cantly.

INTRODUCTION

The nonlinear space-charge effects present strong limit on
beam intensity in high intensity/high brightness accelerators
by causing beam emittance growth, halo formation, and even
particle losses. Self-consistent macroparticle simulations
have been widely used to study these space-charge effects
in the accelerator community [1–13]. In some applications,
especially in high intensity synchrotron, one has to track
the beam for many turns. It becomes computationally chal-
lenging for the long-term space charge tracking simulation
since on one hand one needs to ensure the accuracy of the
simulation results to avoid numerical artifacts, and on the
other hand, one would like to reduce the computing time for
fast physics applications.

The charged particle motion inside an accelerator follows
classical Hamiltonian dynamics and satisfies the symplectic
conditions. It is desirable to preserve the symplectic con-
ditions in the long-term numerical tracking simulation too.
Violating the symplectic conditions in numerical integration
results in unphysical results [14, 15]. A gridless symplectic
space-charge tracking model and a symplectic particle-in-
cell (PIC) model were proposed in recent studies [16, 17].

Even with the use of the symplectic space-charge model,
there still exists artificial emittance growth caused by the
smaller number of macroparticles used in the simulation
compared with the real number of particles inside the beam.
In this study, we proposed a threshold filtering method to
mitigate the numerical emittance growth. In order to improve
computational speed in long-term tracking simulation, we
also explored a frozen space-charge model in the simulation.

∗ Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
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SYMPLECTIC PARTICLE-IN-CELL
MODEL

In the symplectic particle-in-cell (PIC) model, a single
step macroparticle advance can be given as:

ζ(τ) = M(τ)ζ(0)
= M1(τ/2)M2(τ)M1(τ/2)ζ(0) +O(τ3) (1)

where the transfer mapM1 corresponds to the single par-
ticle Hamiltonian including external fields and the transfer
mapM2 corresponds to space-charge potential from multi-
particle Coulomb interactions. This numerical integrator
Eq. 1 will be symplectic if both the transfer mapM1 and the
transfer mapM2 are symplectic. For a coasting beam inside
a rectangular conducting pipe, the space-charge potential
can be obtained from the solution of the Poisson equation us-
ing a spectral method [17]. The one-step symplectic transfer
mapM2 of the particle i for the space-charge Hamiltonian
is given as:

pxi(τ) = pxi(0) − τ4πK
∑
I

∑
J

∂S(xI − xi)
∂xi

×

S(yJ − yi)φ(xI, yJ )

pyi(τ) = pyi(0) − τ4πK
∑
I

∑
J

S(xI − xi) ×

∂S(yJ − yi)

∂yi
φ(xI, yJ ) (2)

where both pxi and pyi are normalized by the reference parti-
cle momentum p0, K = qI/(2πε0p0v

2
0γ

2
0) is the generalized

perveance, I is the beam current, ε0 is the permittivity of
vacuum, p0 is the momentum of the reference particle, v0
is the speed of the reference particle, γ0 is the relativistic
factor of the reference particle, S(x) is the unitless shape
function (also called deposition function in the PIC model),
and the φ is given as:

φ(xI, yJ ) =
4

ab

Nl∑
l=1

Nm∑
m=1

1
γ2
lm

∑
I ′

∑
J′

ρ̄(xI ′, yJ′) ×

sin(αl xI ′) sin(βmyJ′) sin(αl xI ) sin(βmyJ )(3)

where the integers I, J, I ′, and J ′ denote the two dimen-
sional computational grid index, and the summations with
respect to those indices are limited to the range of a few local
grid points depending on the specific deposition function.
The density related function ρ̄(xI ′, yJ′) on the grid can be
obtained from:

ρ̄(xI ′, yJ′) =
1

Np

Np∑
j=1

S(xI ′ − xj)S(yJ′ − yj), (4)

In the PIC literature, some compact function such as linear
function and quadratic function is used in the simulation. For
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example, a quadratic shape function can be written as [18,
19]:

S(xI − xi) =


3
4 − (

xi−xI
∆x )

2, |xi − xI | ≤ ∆x/2
1
2 (

3
2 −

|xi−xI |
∆x )

2, ∆x/2 < |xi − xI |
≤ 3/2∆x

0 otherwise

∂S(xI − xi)
∂xi

=



−2( xi−xI
∆x )/∆x, |xi − xI | ≤ ∆x/2

(− 3
2 +

(xi−xI )
∆x )/∆x, ∆x/2 < |xi − xI |

≤ 3/2∆x, xi > xI
( 32 +

(xi−xI )
∆x )/∆x, ∆x/2 < |xi − xI |

≤ 3/2∆x, xi ≤ xI
0 otherwise

The same shape function and its derivative can be applied
to the y dimension.

Using the symplectic transfer mapM1 for the single par-
ticle Hamiltonian including external fields from a magnetic
optics code [20–22] and the transfer map M2 for space-
charge Hamiltonian, one obtains a symplectic PIC model
including the self-consistent space-charge effects.

As a test of the above sympletic PIC model, we compared
this model with another gridless symplectic space-charge
model and a nonsymplectic PIC solver. Figure 1 shows the
emittance growth evolution through a FODO lattice with 85
degree zero current phase advance and 42 degree depressed
phase advance from these three models. These simulations

Figure 1: 4D emittance growth in a FODO lattice using the
symplectic gridless model, the symplectic PIC model and
the non-symplectic PIC model.

used about 50, 000 macroparticles and 15× 15 modes in the
spectral Poisson solver. It is seen that the symplectic PIC
model and the symplectic gridless particle model agrees with
each other very well. The nonsymplectic spectral PIC model
yields significantly smaller emittance growth than those from
the two symplectic methods, which might result from the
numerical damping effects in the nonsymplectic integrator.
The fast emittance growth within the first 20, 000 periods
is caused by the space-charge driven 4th order collective
instability. The slow emittance growth after 20, 000 periods
might be due to numerical collisional effects.

MITIGATION OF NUMERICAL NOISE
INDUCED EMITTANCE GROWTH

In long-term macroparticle space-charge tracking sim-
ulation, even with the use of self-consistent symplectic
space-charge model, there still exists numerical emittance
growth. Figure 2 shows the four dimensional emittance

Figure 2: 4D emittance growth in a FODO lattice using
several numbers of macroparticles in the simulation.

growth ( εxεx0

εy
εy0
−1)% evolution of a 1 GeV, 30A current pro-

ton beam through 40, 000 turns of a lattice that consists of
10 FODO elements (zero current tune 2.417) with 25, 000,
50, 000, 100, 000, 200, 000, and 1.6 million macroparticles
and 64 × 64 modes. The initial 0.5% jump of emittance
growth is due to charge redistribution to match into the lattice.
It is seen that with the increase of the number of macroparti-
cles, the emittance growth becomes smaller. With the use of
1.6 million macropartices, there is little emittance growth
which is expected in this linear lattice. The extra numerical
emittance growth with small number of macroparticles is
due to numerical collisional effect. This numerical colli-
sional effect is caused by the artificially increased charge
per macroparticle used in the simulation since the number
of macroparticles is much less than the real number of pro-
tons inside the beam. The small number of macroparticles
enhances the fluctuation of charge density distribution and
induces numerical emittance growth.

The numerical fluctuation can be smoothed out by using
a numerical filter in the frequency domain. Instead of using
a standard cut-off method beyond some frequencies, we
proposed using an amplitude threshold method to remove
unwanted high frequency noise. In this method, the mode
with an amplitude below a threshold value multiplying the
maximum amplitude in the density spectral distribution is
removed from the distribution. The advantage of this method
is instead of removing all high frequency modes, it will keep
the high frequency modes with sufficiently large amplitudes.
These high frequency modes can represent some real physics
structures inside the beam. Figure 3 shows the spectral
amplitude of a 2D Gaussian density distribution without
and with 1% threshold filter. The standard cut-off filter with
16 × 16 and 32 × 32 modes are also indicated in above plot.
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Figure 3: Spectral amplitude of a 2D Gaussian distribution
without (top) and with 1% threshold filter.

Most high frequency noise is removed in this distribution by
using the threshold filtering method.

As a test of the threshold filtering method, we reran the
above space-charge long-term simulation using 0 (no filter-
ing), 0.005, 0.1 and 0.05 threshold filtering the charge den-
sity distribution during the simulation and 25, 000 macropar-
ticles. Here, the larger threshold value, the less number of
modes will be included in the simulation. It is seen that

Figure 4: 4D emittance growth with 0 (no filtering) with
0.005, 0.01 and 0.05 threshold filtering of charge density
distribution using 25k macroparticles and 0 filtering using
1600k macroparticles.

without numerical threshold filtering, there is significant
emittance growth after 40, 000 turns. With 0.05 threshold
filtering, there is little emittance growth, which is consistent

with the expected physics emittance growth as seen by using
1600k macroparticles without filtering.

In order to improve the computational speed, we explored
a frozen space-charge model during the simulation. Here,
instead of self-consistently updating the space-charge Pois-
son solver every time step, after some initial time steps, we
store the solutions of the space-charge fields along the lattice
and reuse those stored space-charge fields for the following
long-term simulation. This model assumes that after some
steps, the charge density distribution of the beam attains
stable solutions and will not vary significantly from turn
to turn. Figure 5 shows the total 4D emittance growth evo-

Figure 5: 4D emittance growth evolution with self-consistent
simulation (red) and frozen space-charge model (green).

lution for the above example by using the self-consistent
tracking and by using the frozen space-charge model. It is
seen that the emittance growth evolution from the frozen
space-charge model agrees with that from the self-consistent
simulation quite well. The computational speed of the frozen
space-charge model is about a factor of six faster than the
self-consistent simulation in this case.

CONCLUSION
In this study, we suggested using a symplectic space-

charge PIC model with threshold filtering in frequency do-
main of the charge density distribution to reduce the numer-
ical artifacts in the simulation. By appropriately choosing
threshold value, the numerical noise driven emittance growth
can be significantly reduced in the long-term simulation. In
order to improve the computing speed, we explored a frozen
space-charge model that stores the space-charge field solu-
tions after some initial steps and reuse those space-charge
fields in the following long-term simulation. This method
significantly reduces the computing time and yields reason-
able simulation results in the above linear lattice example
where the beam charge density distribution does vary much
after 200 turns.
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