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Abstract

The symplectic integrators CSABA & CSBAB are used in

order to calculate single particles dynamics in accelerators

and storage rings. These integrators include only forward

drift steps while being highly accurate. Their efficiency to

describe various optical and dynamical quantities for main

magnetic elements and non-linear lattices is calculated and

compared with the efficiency of the splitting methods used

in MAD-X - PTC.

INTRODUCTION

The good understanding of a non-linear system relies

on the accurate knowledge of the evolution of the dynamic

variables, for a great interval of the independent variable

(“time”). In particular in an accelerator, the machine perfor-

mance can be understood by studying the particles’ motion

for a large number of turns. The tracking studies are per-

formed with particle simulators, which are fast and accurate

enough. These attributes of a tracking program, including

the preservation of the Hamiltonian structure of the system,

can be obtained if a symplectic integration scheme is used.

A perturbed Hamiltonian written in the usual form H =
A + ǫB can describe the particles’ motion in an accelerator.

For such Hamiltonians, where both A and B are indepen-

dently integrable, a new set of symmetric symplectic inte-

grators was proposed by McLachlan [1]. Later, in a more

generalized work by Laskar and Robutel [2], the CSABAν &

CSBABν symplectic integrators were introduced. Although

it was shown that generic symplectic integration schemes of

order ζ > 2 have to include by construction negative “time"

steps [3], these particular integrators and for the Hamilto-

nians that we are interested in (certain forms of A and B),

have only forward steps. In this paper, the performance of

these integrators is compared against other well established

ones, namely the famous Yoshida, Forest and Ruth (YFRν)

integrators [4–6] and the improved TEAPOTν ones [7] that

are used in MAD-X - PTC [8].

CSABAν & CSBABν INTEGRATORS

For this work, the Lie algebra is used and its multipli-

cation rule is defined by the Poisson brackets ω • υ =

{ω(q, p), υ(q, p)} =
∑N

j=1

[

dω

dpj

dυ

dqj

−
dω

dqj

dυ

dpj

]

. In this

framework, any symplectic map can be described by one

or more Lie transformations eLK where LK is the Lie oper-

∗ also at University of Crete, Heraklion, Greece
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ator which is defined by Lωυ = {ω, υ}. The map M that

describes the Hamiltonian flow from the initial position si
to a final one s f is shown in the following formal solution:

®Xf =M ®Xi =

∑

n≥0

λn

n!
Ln
H

®Xi = eλ LH ®Xi , (1)

with λ = s f − si . The vector ®X(si) ≡ ®Xi consists of the

initial conditions of the conjugate dynamic variables ®X =
(q1, p1, . . . , qN, pN ).

A problem that is not integrable by making use of the clas-

sical form of the Hamilton’s equations, is also not solvable if

the Eq. (1) is used. It should be mentioned that any truncation

of the summation in Eq. (1) will break the symplecticity of

the solution. The significance of Eq. (1) becomes clear when

the Backer-Campbell-Hausdorff (BCH) theorem is used. Ac-

cording to this and if A and B do not commute ({A, B} , 0),

any Lie transformation eλ LH = eλ(LA+LǫB ) is equally ex-

pressed by an infinite concatenation of the Lie transfor-

mations ec j λ LA and ed j λ LǫB , eλ LH = eλ(LA+LǫB ) =
∞
∏

j=1

ec j λ LA ed j λ LǫB . Keeping terms up to j = N and

choosing appropriately the values of cj and dj , for A and

B being independently integrable, a symplectic integrator

of order ζ (O(λζ )) for the Hamiltonian H is formed as
N
∏

j=1

ec j λ LA ed j λ LǫB + O(λζ ) = eλ LH . In [1, 2] the proce-

dure for the construction of the SABAν & SBABν symplectic

integrators of order O(λ2νǫ + λ2ǫ2) can be found.

The studied Hamiltonian has the general form H = A(qn ·
p2) + B(qm) with n = 0, 1 & m = 0, 1, 2, . . . . The function

A describes the contribution of the kinematic terms even

in curved trajectory (n=1) and B expresses the contribution

from the electromagnetic fields. For such Hamiltonians,

the term F = {{A, B} , B} is integrable. In this case a the

corrector step e−
1
2
λ3ǫ2 fνLF can be added at the beginning and

the end of the SABAν & SBABν in order to eliminate the

λ2ǫ2 dependence of the remainder. The resulted CSABAν

& CSBABν integrators [2] are of order O(λ2νǫ +λ4ǫ2). The

general form of F for different multipoles, except for dipoles

(m = 1), is a non-Maxwellian potential given by:

F (x, y) =
1

1 + δ

(

eB0

P0

hm

)2

r2(m−1) . (2)

hm ≡ (bm, am) is the (2m)th multipole coefficient, with bm
refers to the normal and am to the skew multipole. B0 is the

main dipole field, P0 is the reference momentum, e is the

electric charge, r =
√

x2
+ y2 and δ is the relative energy
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BENCHMARKING STUDIES

In order to compare the performance of the CSABAν &

CSBABν against TEAPOTν [7] and YFRν integrators [5, 6],

various analytical and tracking studies are undertaken. For

all the linear and non-linear analytical studies, the presented

quantities are expressed as a function of the quadrupoles

length (LQ) and their normalized strength (KQ).

Analytical Studies - Phase Advance Calculation

The advance in phase µ caused by passing through a lin-

ear FODO cell can be calculated from the relation cot(µ) =
M1,1

M1,2
βi − αi . The βi and αi are the Courant-Snyder parame-

ters at the beginning of the FODO cell and the Mj,k are the

elements of the FODO’s transfer matrix. Since the optical

functions βi and αi are the same for any integrator, the rela-

tive difference of the ratio M1,1/M1,2 from the target value

M
q

1,1
/M

q

1,2
is studied. The map Mq is the exact map for a

quadrupole. In Fig. 1 the results of the CSABA2 (Fig. 1b)

and the TEAPOT5 (Fig. 1a) are presented. Being interested

in the area enclosed by the white dashed curve, where the

stability of the motion is guaranteed, the CSABA2 is more

accurate than the TEAPOT5 across the KQ - LQ plane, even

if TEAPOT5 consists of more maps, 11 in contrast to 7 of the

CSABA2. For some combinations of the KQ & LQ, among

which are the ones of the LHC and HL-LHC, the CSABA2

is around one order of magnitude more accurate. Indeed, the

CSABAν and the CSBABν are not only more accurate than

TEAPOT but they are also more economical with respect to

the integration time.

Figure 1: The absolute value of the relative difference of the

ratio M1,1/M1,2 from the ratio M
q

1,1
/M

q

1,2
as a function of

different KQ and LQ, for the TEAPOT5 (a) and the CSABA2

(b). The area under the white dashed lines guarantees stable

motion through a symmetric FODO cell.

Analytical Studies - Chromaticity & Tune Shift

with Amplitude Calculation

Using the integrators CSABA2, TEAPOT3 and YFR3,

the chromaticity induced by the sextupoles, noted as ξ, in

a non-linear FODO cell with zero horizontal and vertical

total chromaticity is calculated. In order to have the same

optical functions for all the different studies, the symplectic

integrators are only used for the non-linear elements of the

lattice. The difference of the accuracy order, for the couples

CSABA2 & TEAPOT3 and CSABA2 & YFR3 is shown

in Fig. 2. The CSABA2 is the most accurate of the three

across the area that guarantees stable motion. Compared

to the TEAPOT3 (Fig. 2a) the accuracy difference varies

for different KQ & LQ values. For the LHC and HL-LHC

parameters the CSABA2 is at least six orders more accurate.

Compared to YFR3 (Fig. 2b), the CSABA2 is more accurate

by one order for any value of the KQ & LQ. The accuracy

degradation of the TEAPOT3, for larger values of KQ & LQ,

seems to be an inherent problem of that integrator family.

Since they are constructed to reproduce very accurately the

M
q

2,1
element of the quadrupole’s transfer matrix, they start

loosing in accuracy for higher order multi-pole magnets as

compared to a Hamiltonian-centric integrator such as the

CSABAν & CSBABν . The black dots in Fig. 2 are points

where the CSABA2 is accurate up to the 16thdecimal digit

of the chromaticity value, i.e. it reaches machine precision.

(a)

(b)

Figure 2: The difference of the accuracy order between

CSABA2, TEAPOT3 and YFR3 for the sextupoles chromatic-

ity calculation.

For the same lattice, the tune shift with amplitude is cal-

culated and the results are displayed in Fig. 3. Again the

CSABA2 is at least one order more accurate than YFR3. Sim-

ilar results showing the comparison between the CSABA2

and the YFR3 can be found in [9].

Tracking Studies - Tune diffusion

The above analytical studies are useful indicators for the

power of the novel integrators. Nevertheless, only particle

tracking provide a detailed understanding of the dynamics.

For these studies, a lattice similar to the one of the LHC is

used. In order to obtain the target values, an “exact” symplec-

tic integrator is constructed. This integrator is composed

by the exact solutions for the linear elements and for the

nonlinear ones, it uses a splitting method that consists of
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Figure 3: The difference of the accuracy order between

CSABA2and YFR3 for the sextupoles tune shift with ampli-

tude calculation.

5001 drifts which are separated by 5000 kicks. The kicks

have the same strength and the drifts the same length.

In Fig. 4, the footprints taken by using the “exact” (yel-

low) and the CSABA2 (green) integrator are plotted. The

agreement of the two footprints is almost perfect.

Figure 4: The footprints taken by using the “exact” (yellow)

and the CSABA2 (green) integrator can be seen. Particles

away from the chaotic areas can be seen are denoted by black

rhombus.

The tune of the particles that are not chaotic is in-

variant. However, the limited accuracy of the integrator

that performs the tracking affects the symplecticity and

thereby the tunes. The more accurate integrators will be

affected less. Using the “exact”, the CSABA2 and the

TE APOT3 integrators, the tune diffusion (T D) for parti-

cles away from the chaotic areas is calculated (black rhom-

bus in Fig. 4). The tune diffusion is given by the formula

T D = Log10

(√

(QX f
− QXi

)2 + (QYf
− QYi )

2
)

where, Qi

is the tune at the first 5000 turns and the Q f is the tune calcu-

lated from the next 5000 turns. For the tune determination,

a highly accurate algorithm (NAFF) is used [10–12]. The

T Ds obtained by using the CSABA2 and the TE APOT3, are

compared with the ones taken by the “exact” integrator (tar-

get values). The results can be seen in Fig. 5. In the y-axis

the difference of the accuracy order between CSABA2 and

TE APOT3 for the tune diffusion is displayed. With green

color are the cases where the CSABA2 is more accurate than

the TE APOT3 and with red the cases that the TE APOT3 is

more accurate. In general, the CSABA2 is superior to the

TE APOT3 since it can capture the right T D for 10 % more

particles.

Figure 5: T D accuracy for a set of particles away from

th chaotic areas. With green color are the cases where the

CSABA2 is more accurate than the TE APOT3 and with read

the cases that the TE APOT3 is more accurate.

USE OF THE CSABAν & CSBABν FOR

“TIME” DEPENDED POTENTIALS

The symplectic map M can be calculated from the equa-

tion ÛM =MLH where the dot over M indicates derivation

with respect to the independent variable (τ). Its solution is

given by the following expression:

M(τ) = exp

[∫ τ

τi

LH dτ′
]

, (3)

if the Poisson bracket
{

H(®X; τ1),H(®X; τ2)
}

is equal to zero

for any two instances of the independent variable τ1 and τ2.

The last condition is true for every autonomous Hamilto-

nian. However, any Hamiltonian system with N degrees

of freedom and explicit dependence on the independent

variable (H(®X, τ; τ)) can be equally described from a new

autonomous Hamiltonian with N + 1 degrees of freedom

(H(
®
X; ς)). The new Hamiltonian can be obtained from

the generating function F2 =
∑N

i=1 piqi + pN+1τ. Thus,

H(q, p; ς) = H(q, p, τ; τ) − H by setting qi = qi , pi = pi
for i = 1, . . . , N , τ = qN+1 and adding pN+1 = −H . For any

non-autonomous Hamiltonian at which the previous trans-

formation is performed, Eq. (3) can be used, in particular

to integrate a 3D field [13]. In order to have only positive

steps for the new Hamiltonian H , a convenient splitting

is described by, A(qn · p2
, pn · qm

,−H) and B(qm
, τ) with

n = 0, 1 and m = 0, 1, 2, . . . . For this splitting, the quantity

{{A, B}, B} is integrable (dependent only on the coordinates)

and so, the CSABAν & CSBABν can be employed.

CONCLUSION

In this paper the new set of symplectic integrators which

consists of only forward steps, CSABAν & CSBABν , is

compared with the TEAPOT integrators used in MAD-X

and Yoshida’s 4th order integrator. For all these studies, the

CSABAν & CSBABν are significantly more accurate than

the others. These findings indicate that the implementation

of these integrators in tracking programs used by the accel-

erator community (as it is foreseen for the new generation

MAD (MAD-NG)) will be very beneficial.
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