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Abstract

The resistive wall impedance of an elliptical vacuum
o chamber in the classical regime with infinite thickness is
£ known analytically for ultra-relativistic beams by means of
= the Yokoya form factors.

Starting from the longitudinal electric field of a point
charge moving at arbitrary speed in an elliptical vacuum
hamber, which we express in terms of Mathieu functions, in
his paper we take into account the finite conductivity of the
eam pipe walls and evaluate the longitudinal and quadrupo-
ar impedance for any beam velocity. We also obtain that the
uadrupolar impedance of a circular pipe is different from
- zero, approaching zero only for ultra-relativistic particles.
Even if some of the results, in particular in the ultra-
© relativistic limit, are already known and expressed in terms
-8 of form factors, this approach is the first step towards the
—D calculation of the general problem of a multi-layer vacuum
z chamber with different conductivities and of elliptic cross
<. section.
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INTRODUCTION

The coupling impedance [1,2] of a resistive vacuum cham-
ber represents an important contribution to the total machine
£ impedance, in particular for large particle accelerators [3,4].
= Among several geometries of the beam pipe, the elliptic
fg cross section is very common [5, 6].
g The impedance of an elliptical lossy vacuum chamber,
O and more in general with an arbitrary cross section, has been
_o.c) derived in the ultra-relativistic limit in refs. [7-10]. It is
o . expressed in terms of form factors, known as Yokoya form
g factors, which depend on the ellipticity of the beam pipe and
& correspond to the ratio between the impedance with elliptic
& cross section and circular one with radius equal to the minor
E semi-axis of the ellipse. For a perfectly conducting elliptic
gpipe, an equivalent radius at low frequency has also been
3 derived in ref [11].
The extension to the non relativistic case, for the elliptic
< cross section, has been obtained in ref. [12], where, however,
a Gaussian beam distribution, and not a point charge, has
—; been used, leading to a quite complicated formulation of the
3 field. Another formulation, expressed as an integral form,
_c has been also derived in ref. [13] in the classical regime for
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In this paper, starting from the longitudinal electromag-
netic field of a point charge in an elliptical perfectly con-
ducting beam pipe obtained in ref. [14] as expansion of
Mathieu functions, we first derive the indirect, or scattered,
field due to the finite conductivity of the beam pipe. This
field, valid in the classical regime of infinite thickness and
for a good conductor, allows to derive the longitudinal and
the quadrupolar resistive wall impedance for arbitrary beam
velocities.

This represents a first step towards the derivation of the
resistive wall impedance for a multilayer vacuum chamber
with elliptical cross section.

LONGITUDINAL ELECTRIC FIELD IN A
PERFECTLY CONDUCTING ELLIPTICAL
PIPE

Let’s consider a point charge travelling with velocity
v = Bc along the axis of an elliptical pipe. To describe
the geometry we use confocal elliptical coordinates ¢, de-
scribing a set of hyperbolas having the same foci, and g,
describing a set of confocal ellipses, as shown in Fig. 1.

p=m/2

p=3m/2
Figure 1: Elliptic coordinates.

The relation between elliptical and Cartesian coordinates
is given by

{ x =F coshpu cosg, )

y = F sinh u sin ¢,
where F is the focal distance of the ellipse, related to the
major and minor semi-axis a and b by

F =+Va? - b2 2)
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These coordinates are useful to express the Mathieu func-
tions [15]. In particular we define the elliptic cosine even
function of negative argument —gq as

cexnlp,—q) = (1) Y (-1y AS cos2rg),  (3)
r=0

and the corresponding radial modified Mathieu functions of
the first and second kind respectively as

Cenlp—q) = (=1 3 (=17 ALY cosh(2rp),

P 0 @n )
Feky (4, —q) = ﬂ_Az(él) ;o:o A2r I,(v)K, (),
0
with ©.4) Z.2)
, cexl\l, q)cexl s, q
phy = (1) 2 (5)

o) :
AO

and vi = y/ge™ and v, = +/ge¥. Here I,(x) and K, (x) are
the modified Bessel functions of first and second kind re-
spectively. The expansion coeflicients A(zzr“ can be obtained
by solving an eigenvalue problem of a truncated matrix [14].

With the above expressions, the longitudinal electric field
produced by a point charge moving on the axis of a perfectly
conducting elliptic vacuum chamber has been written in
ref. [14] as an infinite series of Mathieu functions:

o A(Zl)

E?=27G ) ——cey (% - 61)
= Pu

(Fekzl (4, —q) -

Feka (1o, —q) Cex (1, —9)) > (6

Cey (1o, —q)
with
. ZoQko koF \* a
=20 =), coshpg==. (7
T2y (2/37) coshpo =5

Here Q is the point charge, 8 and y the relativistic factors,
Zy the vacuum impedance, and k( the wave number in free
space, equal to w/c.

LONGITUDINAL ELECTRIC FIELD IN A
FINITE CONDUCTIVITY ELLIPTICAL
PIPE

The longitudinal electric field given by Eq. (6) allows
to derive the azimuthal magnetic field inside the perfectly
conducting pipe as

_ By 9E7 _ V2By IE7

" kiZy On " k,ZyF+Jcosh 2u—cos2p Ou’

where k; = jko/By, Zy is the vacuum impedance, and n the
coordinate normal to the iso-azimuthal lines.

This magnetic field, evaluated at the boundary u = uo,
can be written in terms of the Wronskian

®)

P’ by
Wa(=q) = (=1)"*! 2(21) cey (5, —6]) cex (0,-q), (9)
A,
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120 Py \/cosh 2 — cos 2¢ Cealpo, =)

(10)

In case of a vacuum chamber with a finite conductivity o,
we use the approximation that Eq. (10) remains valid, for a
good conductor, also at the boundary in the conducting ma-
terial. By applying then the Leontovich [16] condition, from
the magnetic field we can obtain the electric field induced
in the pipe wall as

1+

E7 (¢, po, q) = 5o

with ¢ the skin depth and Z; the surface impedance. This
relation is valid for a wall of infinite thickness.

We suppose now that the electric field in the vacuum has
the same configuration as that inside the perfectly conducting
pipe of Eq. (6) plus an additional term due to the scattered
field of the finite conducting wall, which we write as

tp:ZSHv (11)

, 2\V27ByGZ
Eé(% uq) = TFS
t

D (F1P Dapcery(p,~q)Cerp(p—q),  (12)
p=0

with unknown coefficients D,,. The total field E? + E!
evaluated at the boundary u = yy must be equal to the field
given by Eq. (11). Since Eq. (6) is zero at u = ug, we then
remain with EZ(¢, uo, q) = EZ (¢, pto, g). This equation can
be used to obtain the coefficients D,,.

By using the orthogonality properties of the cey; (@, —g),
and after some manipulations, we obtain

D 1 = AE)ZI)WZI(_Q)
2 =
P nCesp(po, ~q) &4 phCexlpo, —q)
DI ENTATP AL, (o), (13)
r=0 t=0
where
V2re Clr=tl+Dror (% +|r - tl)
Lr,t(,UO) =

r(%) Ir— 1!
F(L |r—t|+l'|r—t|+1'e_4'“° +
27 2? b

—(2r+2t+1 1
V2re(2r+2t+ )”01“(§+r+t)
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[a)
el
£ with T the gamma function and F(aq, b; c; z) the hypergeo-
% metric function.

ff For sake of completeness, by using the same method for
%a circular pipe, the electric field can be expressed as [17]
: GByZ;
E;,circ - : (15)

(%)
- /. 0 - b
kibZoI2 (%) By

with Ip(x) the zero order modified Bessel function of the
- first kind.

title of the work

LONGITUDINAL AND QUADRUPOLAR
RESISTIVE WALL IMPEDANCE

The longitudinal electric field given by Eq. (12), with
he coefficients of Eq. (13), can be used to determine the
ngitudinal and the quadrupolar impedance. Indeed the
ngitudinal impedance per unit of length is defined as [17]

t
. lo
lo
dz _ El(n=0¢=%)

dz 0

The same expression (electric field in the origin) can be
+ used also for the circular case of Eq. (15). In Fig. 2 we show
g the longitudinal impedance for 8 = 0.5, b = 35 mm, and
Fo=4X 107 S/m as a function of frequency for the extreme
& cases when the elliptic pipe tends to the circular and the flat

(16)
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Figure 2: Longitudinal impedance vs frequency in the ex-
treme cases of circular and flat pipe.

code [18]. When comparing the impedance of the elliptic
pipe with the circular one, it is possible to define its ratio
at relativistic energies, known as Yokoya form factor [7],
which depends only on the coefficient ¢, = (a — b)/(a + b).
With the above expressions we are able to obtain the form
8 factor for any beam velocity. Indeed, it is possible to demon-
3 strate that this factor depends now on g, and on the parameter
k, = kob/By. When this last term tends to zero we obtain
2 the Yokoya form factor. In Fig. 3 we show the form factor
zas a function of ¢, for different values of k, compared with
E the Yokoya form factor.
The same longitudinal field can also be used to obtain the
= quadrupolar impedance. For the vertical case, for example,

r the terms of the CC BY 3

nd

used

WOTr!

S we have

g

e 2 i

‘g dZy quad _ _i 0 E; a7
! dz koQ 8y? :

g n=0.p=3

S THPAF036

of

3042

IPAC2018, Vancouver, BC, Canada

JACoW Publishing
doi:10.18429/JACoW-IPAC2018-THPAF036

1.0

4
©

o
o

Long form factor
o
N

o
o

o

n
U
oo

0'%.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ar

Figure 3: Longitudinal form factor vs g, for different values
of k, = kob/By.

where y is given by Eq. (1) or, for the cylindrical pipe, y = r.

This impedance is zero for the circular pipe only at ultra-
relativistic velocity. When 8 < 1, also in cylindrical sym-
metry, a quadrupolar impedance appears, as shown in Fig. 4,
where the quadrupolar impedance at different ¢,., for 8 = 0.5,
b = 35mm, and oo = 4 x 107 S/m, is compared with the
circular and the flat cases [18].
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Figure 4: Quadrupolar impedance vs frequency for different
values of g,.

CONCLUSION AND OUTLOOK

Starting from the expression of the longitudinal electric
field inside a perfectly conducting elliptic vacuum chamber
given as infinite series of Mathieu functions, we have de-
rived the longitudinal and the quadrupolar impedance in the
classic resistive wall regime taking into account for the finite
conductivity of the beam pipe.

We have obtained very good agreement in the extreme
cases of circular and flat beam pipe, and extended the longi-
tudinal Yokoya form factor at any beam energy.

We have also shown that a quadrupolar, not negligible
impedance appears also with circular symmetry in the non
ultra-relativistic regime.
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