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Abstract 
Successful construction of the control system is an im-

portant problem in the accelerator. The control behavior 
still relies on the human operators and the operators 
should directly manipulate the devices to control the ac-
celerator system. To operate the accelerator well, the 
human operators should carefully manipulate the control 
parameters. If the control does not function properly, it 
becomes difficult to handle the accelerator and cannot 
perform the accurate operations for the control. In this 
work, we propose a deep learning based model predictive 
control approach for solving the nonlinear control prob-
lem of the accelerator. The proposed approach constructs 
the predictive model of the accelerator using the deep 
neural network (DNN). In the control design stage, the 
model predictive control (MPC) finds the optimal control 
inputs by solving the optimization problem. To analyze 
the performance of the proposed approach, we applied the 
proposed approach into the RFT-30 cyclotron.  

INTRODUCTION 
Recently, particle accelerators become more promising 

devices for industrial, environmental, and medical appli-
cations. Easy operation and minimum maintenance are 
indispensable parts for the convenient use of the accelera-
tor. In particular, a control problem is an important and 
critical issue for easy and effective operation of the accel-
erator. If the control does not function properly, the accel-
erator may become difficult to handle and cannot perform 
the accurate operations. 

In this work, we propose a deep neural network (DNN) 
based model predictive control (MPC) approach for the 
RFT-30 cyclotron. To control highly non-linear and time-
varying system, we applied the deep learning model with 
deep neural network (DNN) into the control approach. 
The proposed approach constructs the beamline model 
based on the deep belief network (DBN) [1]. Based on the 
DBN-DNN model, the predictive controller finds the 
optimal control parameters of the beamline for the desired 
output. We analyzed the performance of the proposed 
approach for the RFT-30 cyclotron beamline system. The 
proposed DNN MPC approach can minimize the beam 
tuning time and enables effective beam control. Moreo-
ver, combined with other control techniques, the proposed 
approach enables beam auto-tuning and control automa-
tion. 

 
 
 

DEEP BELIEF NETWORK DEEP NEURAL 
NETWORK (DBN-DNN) ARCHITECTURE 

 

 
Figure 1: The overview of DBN-DNN structure. 

Hinton et al proposed the deep belief networks (DBPs) 
for deep learning [1]. Figure 1 shows the basic overview 
of the DBN-DNN structure. The DBN learning is com-
posed of pre-training procedure and fine tuning proce-
dure. The pre-training is to decide the weight between the 
layers to train the model accurately before the main train-
ing. After pre-training procedure, the proposed approach 
performs the fine tuning with the error back propagation 
algorithm. 

 

 
Figure 2: The RBM structure and training procedure. 

 
Figure 2 shows the RBM structure and the learning 

procedure. The pre-training procedure trains the model 
using the restricted boltzman machine (RBM). The pre-
training procedure is an unsupervised learning to find the 
optimum weights (W) between the input layer (visible 
layer) and the hidden layer. The learning is to find the 
weights W which maximize the log likelihood based on 
the energy function and it can be written as 
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Each weight is updated using the Contrastive diver-
gence and Gibbs-sampling [1]. After the pre-training 
procedure, the DBN-DNN performs the fine tuning using 
the error back-propagation algorithm. This process is 
similar to the multilayer perceptron of the artificial neural 
network. The fine-tuning procedure updates the weights 
W to minimize the error between the output layer value 
and the output data. The direction of the fine tuning is 
from the output layer to the visible layer. 

DNN BASED MPC FOR RFT-30 CYCLO-
TRON 

 
Figure 3: A DNN-DBN based MPC approach. 

In this work, we propose a DNN based MPC approach 
for RFT-30 cyclotron. Figure 3 shows the basic architec-
ture of the proposed DNN-MPC approach. The DNN-
MPC is composed of the DNN and MPC blocks. The 
DNN block predicts the system output using the control 
input. The MPC block finds the optimum input with the 
desired output and the predictive output, and it can be 
written as following optimization problem: 
Minimize 
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where Np is the prediction horizon, yd is the reference 
trajectory, Np is the control horizon, u is the control input, 
and λ is weighting factor. As shown in Fig. 4, the MPC 
approach solves the optimization problem using the pre-
dictive output and the future control input. 

 
Figure 4: Model predictive control approach. 

The DDB-DNN block is a system identification block. 
Figure 5 shows the DNN training procedure. First, the 
DNN structure is created with the input, hidden, and out-
put layers. Next, the RBM layers are pre-trained using the 
contrastive divergence and Gibbs sampling. Finally, the 
fine tuning process based on the error back propagation 
algorithm optimizes the DNN block. 

 

 
Figure 5: Overview of the DNN-DBN training procedure. 

SIMULATION RESULTS 
To analyze the performance of the proposed NN MPC 

approach, we performed the evaluations based on the 
RFT-30 cyclotron beamline system. The RFT-30 cyclo-
tron installed at KAERI is 30 MeV cyclotron used for RI 
production and fundamental researches. Figure 6 shows 
the cyclotron beamline system. The beamline is composed 
of drum collimator (DC), steering magnet (ST), quadru-
pole magnet (QA, QB, QC), quadrant (QD), and 
vault/target faradaycup (FC). In order to transmit the 
proton beam safely into the beamline target, the operator 
should carefully perform the beam tuning using the beam-
line components. The cyclotron operator receives the 
feedback data from the beam diagnostic devices and per-
forms the beam tuning by adjusting the magnets.  
 

 
Figure 6: The DBN-DNN beamline model. 

We constructed the DBN-DNN model for the RFT-30 
cyclotron using the beamline simulation. The simulation 
is performed through the simple accelerator modeling in 
matlab (SAMM) [3]. After the beamline simulation, the 
input and the output data are used for the DNN training. 
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Figure 7: Performance results of the DNN prediction. 

Based on the training data, we constructed the beamline 
model using the DBN-DNN code [4]. We randomly gen-
erated the input parameters for the steering magnets and 
estimated the beam position with the SAMM simulation. 
We changed the input every 5 time steps and compared 
the simulation output with the predictive DNN output. As 
shown in Fig. 7, the predictive DNN output is close to the 
beamline simulation output.  
 

 
Figure 8: Performance results of the DNN-MPC approach. 

Next, we performed the evaluations for the proposed 
DNN-MPC approach. The proposed MPC approach finds 
the input parameters for the specific reference trajectory 
based on the DNN predictive model. The predictive con-
troller finds the parameters by using the quasi-Newton 
optimization algorithm. As shown in Fig. 8, the beamline 
output for the input parameters is close to the target out-
put. The performance results show that the proposed 
DNN-MPC approach can control the beamline system 
accurately. 

CONCLUSIONS 
The beamline tuning is an important problem in the ac-

celerator system, but it is a difficult task and a time con-
suming work for the human operators. In this work, we 
proposed a DNN based MPC approach for the RFT-30 
cyclotron. The proposed approach enables the human 
operators to be easy beamline tuning and provides the 
operators with reducing the time for the accelerator opera-
tion. In the future, we plan to apply the proposed DNN 

MPC approach into the control system of the RFT-30 
cyclotron. 
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