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Abstract
CERN operates and maintains a large and complex tech-

nical infrastructure that serves the accelerator complex and

experiments detectors.
A performance assessment and enhancement framework

based on data mining, artificial intelligence and machine-

learning algorithms is under development with the objec-

tive of structuring, collecting and analysing the operation

and failure data of the systems and equipment, to guide the

identification and implementation of adequate corrective,

preventive and consolidation interventions.

The framework is designed to collect and structure the

data and identify and analyse the associated driving events.

It develops dynamically functional dependencies and logic

trees, descriptive and predictive models to support opera-
tion and maintenance activities to improve the reliability

and availability of the installations. To validate the perfor-

mance of the framework and quality of the algorithms, sev-

eral case studies are being carried out.

In this paper, we report on the design and implementa-

tion of the performance assessment and enhancement

framework, and on the preliminary results inferred on his-

torical and live stream data from CERN’s technical infra-

structure. Proposals for the full deployment and expected

long-term capabilities will also be discussed.

INTRODUCTION

CERN's Technical Infrastructure (TI) is a large and com-

plex system of systems providing essential services for the

safe and reliable operation of its particles accelerators and

experimental areas [1]. These essential services provided

by the TI can be considered a critical infrastructure [2],

since a failure impacts directly on the accelerators perfor-

mance and overall availability for the physics experiments.
Over the past few years, the LHC accelerator downtime

due to TI equipment faults has been reduced to less than 10

% (inclusive of cryogenics system faults, which account

for half of the downtime) of the physics operation time

(which includes stable beams, operations, but excludes

pre-cycles), but still accounts for 1/3 of the overall down-

time [3]. The availability improvement obtained has been

guided by the analysis, performed by an ad-hoc operation

committee, of the data acquired during occurred major

events that have affected the accelerators operation and the

monitoring of the interventions undertaken to minimize the

impact on the operating conditions. It is, therefore, para-
mount to identify clear and easy metrics and tools to mon-

itor objectively the activities and guide the implementation

strategies to improve the infrastructure performances and

overall availability in all configurations and operating sce-

narios. A smart framework for the availability and reliabil-

ity assessment and management of accelerators technical

facilities has been proposed to support the analysis, to

guide the operation and improve the overall efficiency of

the process. The framework provides an integrated envi-

ronment to collect data from heterogeneous sources (sen-

sors, alarms, logbooks), implements mining and machine
learning techniques to infer functional dependency models

and fault logic models, and dynamically updates them to

follow the evolution of the TI [4].

WORK OBJECTIVE

CERN’s TI is composed of a set of interconnected sys-

tems, performing different functions and based on technol-
ogies from various domains. Due to the complexity of the

TI topology, its geographic distribution and the differences

in the functionalities, the various systems are typically de-

signed and built independently, taking into account only

the direct physical interfaces and assuming a certain num-

ber of functional dependencies based on the assumed oper-

ational scenarios. Furthermore, the systems may change in

time, e.g. grow in size, by including new components or

updating old components as a result of technology ad-

vancements, consolidations and operation needs. Then, in

general, the interconnections among the different systems

and the functional dependencies between their components
are in many cases modified with respect to the initial de-

sign, both at the physical and functional levels.

Given the importance of dependent failures in risk, reli-

ability and availability analysis, the primary objective of

this work is the identification of the functional dependen-

cies among components of different systems and of sets of

interconnected components.

Various benefits are expected from the capability of

identifying functional dependencies and sets of intercon-

nected components:

1. A more accurate estimation of the TI reliability and
availability, which can be significantly underesti-

mated were the dependencies not considered [5].

2. The decisions of control room operators for the TI

daily operation and during the management of major

events are expected to be facilitated by the knowledge

of the functional dependencies between components

of different systems.

3. The investigation of the causes of major events can

benefit from the knowledge of the presence of set of

interconnected components.
 _________________________________________
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To support and simplify the work of systems experts and

control room operators in the process of retrieving and

keeping up-to-date the functional dependencies among

components of different systems, two other possible
sources of information are considered:

Large datasets containing historical values of tens of

thousands of signals collected from sensors measuring

physical quantities from the TI components;

Sequences of alarms provided by the TI supervision

systems.

With respect to the first source of information, an ap-

proach for the identification of sets of signals whose corre-

lated behaviors can explain major events (i.e. impacting the

operation of the accelerator with the loss of the circulating

beam) is being investigated. The idea is to deal with the
very large number of available signals by selecting a small

subset of them, which, in case of major events, become cor-

related. This will be performed by developing a feature se-

lection wrapper algorithm based on the combined use of

differential evolution and support vector machines [6, 7].

Then, the analysis of the correlations among the selected

signals in cases of major events is expected to provide in-

formation on the unknown functional dependences among

components of different systems.

In this work we focus on the use of the second source of

information, i.e. the sequences of alarms provided by the

TI supervision systems. To this purpose, we consider a TI
formed by thousands of components, which, typically, gen-

erate tens of thousands of alarms every day. An alarm is

generated when the measured value of a key physical quan-

tity goes outside a predefined normal operation range. The

alarm thresholds are set by experts of the technical infra-

structure to prevent the occurrences of possible dangerous

situations and to identify components malfunctions or deg-

radation. Sequences of alarms are expected to contain in-

formation about the functional dependencies among com-

ponents of different systems. In practice, the malfunction

of a given component is expected to cause variations of
correlated key quantities and, therefore, activate the corre-

sponding specific alarms. If that component has functional

dependencies with components of other systems, these lat-

ter are expected to trigger other alarms, as well.

The methodology proposed in this work for the identifi-

cation of functional dependencies from the analysis of se-

quences of alarms is based on the following three steps:

1.

2.

3.

Representation of the Alarm Sequences by 

Means of Boolean Vectors
We consider a TI made of L systems, with the generic l-

th system formed by  components, each one with asso-

ciated  possible alarms. Time is discretized into a 

series of consecutive time intervals         
 of the

same length t. The time length is based on expert’s esti-

mates of malfunctions propagation.  It is further optimized

to minimise computing time and maximise the number of

true positives within each major event. Then, a Boolean

variable, , is associated to the generic alarm of type n,

of component  of the the -th system of the TI, with

 and . The value

 of the Boolean variable  in the time interval

 is 1 if the corresponding alarm occurs at least once and

0 if it doesn’t occur during the time interval .

The state of the generic component  of the sys-

tem in the time interval  is represented by the vector

where  indicates the number of alarms associated to the

component. Figure 1 and Table 1, show an example of a

sequence of alarms generated by a generic component

with associated n alarms and the corresponding time
evolution of the Boolean vector.

Figure 1: Example of sequence of alarms.

Table 1: Time Evolution of the Boolean Vector   Corre-
sponding to the Sequence of Alarms

t Slm1 Slm2 Slm3 Slm4 Slm5 Slm6

t1 1 0 0 0 0 0

t2 0 1 0 0 0 0

t3 1 1 1 0 1 1

t4 0 0 1 0 1 0

t5 0 0 1 0 0 1

t6 0 1 0 1 0 0

t7 0 0 0 0 0 0

t8 0 0 1 0 0 1

Since the generic -th system is formed by  compo-

nents, we can represent the system state, , by concatenat-

ing the corresponding vectors , with , i.e.

. Finally, the overall

state of the TI in the generic time interval  is obtained

by concatenating the vectors , i.e,

.
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Generation of the Association Rules

We consider the sequence of vectors ( ),  = 1,…,  
obtained from the analysis of the alarms in a period of time 
of lengths t. These vectors are organized in the dataset

ETI, where each row is a vector ( ). The methodology 
for the identification of functional dependencies among 
components of different systems is based on the analysis 
of the correlation among the alarms. This task is performed 
by using association rules.

Generally, correlations are implications from which it is 
possible to derive association rules, which are logical ex-

pression of the form X  Y, indicating the correlation be-
tween categorical objects, which, in this work, are the

alarms represented by the Boolean variables [8,9]. In-
formally, implication (and, therefore, association rules) tell 
us that whenever a given set of alarms X (antecedent of the 
rule) is verified at a given time t  then, the set of alarms 
Y (consequent of the rule) is also verified at the same time 
[10]. Formally, the association rule X  Y is created when 
X  Y, is verified if in at least c% of the ETI dataset events 
(time intervals) in which when X occurs also Y occurs, and 
if X and Y occur together in at least s% of the ETI events. 
The parameters c and s are called confidence and support, 
respectively [11].

It is worth noticing that implications identified by using 
association rules are not time-dependent rules, i.e., they do 
not allow inferring causal relations among the alarms.

Sets of Interconnected Components
Association rules allow identifying components whose 

malfunctions are correlated. In the cases in which the num-

ber of identified rules is very large, it can be useful to ex-

tract and visually represent sets of interconnected compo-

nents and to separate groups of components which are not 
connected by rules. In this work, this has been done by ap-

plying a graph-oriented representation. In this kind of 
graph each vertex represents a component and the depend-

ence between components is expressed by the edge con-

necting two vertices. Then, sets of interconnected compo-

nents are identified in the graph by dividing groups of ver-

tices which have no edges in common.

CASE STUDY

The proposed methodology has been applied to alarms 
generated by the CERN’s TI. We consider a database con-

taining alarms generated during the major events of the 
year 2016 by different supervision systems of LHC Zone 
8, a specific zone of LHC that is representative of the com-

plexity of the overall TI. The considered alarms are gener-

ated by the cryogenic, the cooling, the ventilation and the 
electric systems. The analysis of the dataset has shown that 
253591 alarms have been generated during 2016. Consid-

ering the alarms description, we have found out that these 
alarms have been caused by 6800 different malfunctions 
which involved 2895 different components.

The one-year period (from January 1st 2016 to Decem-

ber 31st 2016) has been divided into  = 17500 time in-

tervals of duration of 30 minutes. The state of the consid-

ered part of the ICT in the generic time interval t  is rep-

resented by the 6800-dimensional Boolean vector ( ) =
,…, . Therefore, the dataset ETI is formed by

17500 rows and 6800 columns. The association rules have

been generated by considering the support (s%) and the

confidence (c%) values equal to 0.02 and 0.8, respectively.

These parameters have been set by following a trial and

error procedure to generate relevant and meaningful asso-

ciation rules. The method has found a total number of 1112

association rules from which 14 sets of interconnected

components involved in the loss of the circulating beam

have been identified. The rules involve components of dif-

ferent systems which are effectively correlated one with

each other. An independent expert analysis confirmed that
all the 14 identified sets are part of the chain of malfunc-

tions of the considered systems, resulting in the major

events of the year 2016.

It is important to underline that the association rules can-

not be interpreted as causal rules. The causality will be ex-

tracted by the analysis of the operational data, related to the

associated alarms.

CONCLUSIONS

In this work we have presented the smart framework un-

der development, to be integrated with the existing envi-

ronment to collect heterogeneous data, and implement

mining and machine learning techniques to dynamically

update predictive models.

The proposed smart framework is a valuable tool in sup-

port of systems experts and control room operators to iden-

tify functional dependencies between components of dif-

ferent systems of CERN’s TI to improve availability and

reliability assessment and facility management.
We have proposed a method for the extraction of associ-

ation rules from alarms sequences. The obtained results

show the capability of the method of identifying functional

dependencies among components of different systems.

Future research will consider methods for the extraction

of causal rules that take into account the time sequence of

the events. Furthermore, we will investigate the integration

of the identified functional dependencies between compo-

nents of different systems with the available high-level

models of the individual systems.
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