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Abstract

The application of machine learning methods and con-
cepts of artificial intelligence can be found in various in-
dustry and scientific branches. In Accelerator Physics the
machine learning approach has not yet found a wide appli-
cation. This paper is devoted to the evaluation of machine
learning methods aiming to improve the optics measure-
ments and corrections processes at LHC. The main subjects
of the study are the detection of faulty beam position moni-
tors and the prediction of quadrupole errors using decision
trees and artificial neural networks. The results presented in
this paper clearly show the suitability of machine learning
methods for the optics control at LHC and the potential for
further investigation on appropriate approaches.

INTRODUCTION

With the increased technological complexity of acceler-
ators, meeting the demand of accelerator control and oper-
ation necessitates more powerful and faster methods. Ma-
chine learning methods and concepts of artificial intelligence
are considered in various industry and scientific branches,
and recently, these methods have been used in high energy
physics mainly for experiments data analysis [1, 2].

The central task in the optics measurements and correc-
tions processes is the identification of optics imperfections
and computation of corrections. In this work, we present a
machine learning approach for corrections computation and
comparison of prototyped models trained on simulations
data.

A problem appearing often in the measurement process
is the identification of faulty data samples in measurements
that requires application of automatic tools as well as human
intervention. The application of cluster analysis [3] to detect
faulty monitor data in early stages of optics measurements
and corrections process is also a part of the presented work.

The objective of this preliminary study is to investigate
the effectiveness of machine learning methods applied to
accelerator optimization, accelerator control and in partic-
ular on optics measurements and corrections. Presented
experiments on simulated and real data provide the basis for
further studies such as application of more complex neural
network structures, combination of different noise detection
algorithms and integration of these methods into real-time
machine operation.
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FAULTY BPMS DETECTION USING
CLUSTER ANALYSIS

The phase of measured betatron oscillation is inferred
from a harmonic analysis of the turn-by-turn transversal
beam positions measured at BPMs around the ring. Recon-
struction of the optics is mainly concerned by the propa-
gation of phase advances between BPMs [4]. Therefore,
the appearance of a faulty signal has significant impact on
the obtained optics functions and sequentially computed
corrections. In this work we evaluate faulty BPM signal de-
tection applying cluster analysis. Cluster analysis includes
methods of grouping or separating data objects into regions
in a hyperparameter space, such that dissimilarity between
the objects within each cluster is smaller than between the
objects assigned to different clusters.

Motivation
The main issue regarding the problem of faulty BPMs is

the appearance of unphysical data in the reconstructed optics
functions. Currently used data cleaning techniques are based
on identification of flat signal, threshold definition for the
signal spikes and manual cleaning of the data [5]. Most of
the noise can be removed using these methods, as well as
through applying advanced signal improvements techniques
based on SVD and FFT [6], however, faulty data samples
can be observed in the optics functions.

The fact that the properties of bad signal producing un-
physical data in the reconstructed optics functions are of-
ten unknown requires alternative solutions to detect faulty
BPMs. The application of cluster analysis should replace the
basic numerical tools currently used to identify the outliers
in the measured data and thus reduce the human interven-
tion in the data analysis process. The signal improvements
techniques should remain a part of the signal processing.

Conceptual Solution
Giving the described constraints, clustering appears as

an appropriate alternative method since the analysis can be
performed on multi-dimensional space including all param-
eters of turn-by-turn data obtained through the harmonic
analysis [7]. Another benefit of cluster analysis is the unsu-
pervised learning approach, which means that no labeled
data is needed to train the algorithm. This property of cluster
analysis has significant importance since we do not aim to
replicate the results of existing techniques and no training
data set is available.

The analysis is performed on a three dimensional parame-
ter space containing the betatron tune, the amplitude of the
measured oscillations and the relative difference between the
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Figure 1: 2D-projection of the clusters produced by DBSCAN. The data is scaled to the range [0,1].

measured and design phase advances between the BPMs.The
measurements from the interaction regions (IRs) and the arcs
are treated separately since the data points distribution is
different in these regions. The cluster analysis presented in
this section was applied on a data measurement set taken
during the machine development using half integer tunes at
injection energy.

Defining the faulty signal recognition problem as a clus-
tering task, the data has to be separated into minimum two
clusters - good and faulty signal, which can be identified
as outliers or considered as noise. Since the appearance of
outliers in the data affects the computation of the mean of
parameters, the algorithms based on centroids search such
as K-means [8] are not appropriate for our problem. Instead
of centroid search, the clusters can be built based on the
density of the data samples.

Results Applying DBSCAN
The DBSCAN (Density-based spatial clustering of ap-

plications with noise) [9] is a data clustering algorithm for
large spatial databases. The algorithm assumes clusters of
arbitrary shape and views clusters as areas of high density
separated by areas of low density, instead of looking for the
centroids. The main idea of the algorithm is the concept
of core samples, which are samples in areas of high den-
sity. A cluster is therefore a group of core samples which
have to contain a minimum number of points in the neigh-
borhood, which is computed by the chosen distance metric.
The cluster also includes non-core samples that are in the

neighborhood of a core sample, but are not core samples
themselves (as there are not enough points in the neigh-
borhood). Consequently, the input of the algorithm is the
neighborhood distance Eps and the minimum number of
data points MinPts in a neighborhood of a core point.

Depending on the tuning of input parameters of the DB-
SCAN algorithm, one or more clusters can be built. To
indicate bad BPMs we can consider one cluster, the data
points outside the cluster should be considered as signal
produced by faulty BPMs. Alternatively, building several
clusters of good BPMs is potentially interesting to discover
the properties of good BPMs and the relations between the
measured parameters. The study of common properties of
the BPMs within each of the produced clusters can help to
extract new features of the measured data.

The results of applying DBSCAN with Eps=0.3,
MinPts=60 and Eps=0.5, MinPts=30 respectively for the
arcs and IRs measurements are presented in Fig. 1. Different
definitions of minimum distance is required since the vari-
ance of the data in the IRs is significantly higher compared
to the arcs. This difference is due to the large β-functions in
the IRs with small IP beam size. Moreover, within the arcs
a data separation is also expected since the optics inside the
arcs is periodic due to the presence of alternating focusing
and defocussing quadrupoles. The obtained clustering con-
stellation in the arcs is expected since it corresponds to two
different lattice regions - focusing and defocussing areas.
The IRs measurement build only one cluster, which allows
to identify the outliers.
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To evaluate the effectiveness of cluster analysis the recon-
structed optics has to be studied. We use beta-beating as
the most relevant optics control parameter since it describes
the difference between the current optics and the designed
machine. Figure 2 shows the beta-beating measurement ob-
tained from optics analysis performed on turn-by-turn data
excluding the BPMs identified by DBSCAN as noise. The
achieved elimination of significant number of unphysical
data samples demonstrates the potential of DBSCAN on the
detection of faulty BPM signal.
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Figure 2: Comparison of beta-beating reconstructed from
uncleaned and DBSCAN cleaned data.

Outlook
As the DBSCAN algorithm is robust against the outliers,

it can be applied to eliminate them on different stages of
measurements and correction process. Although different
input parameters for the algorithm might be required for
specific applications.

The clustering methods allow to analyze a space of arbi-
trary dimensionality and thus an arbitrary number of optics
parameters can be selected to perform the analysis. This
allows to observe the relation between particular observables
and the patterns in the clustered data. The fact that particular
good BPM data points can be separated in different clusters
depending on the algorithm settings is of interest for further
investigation. A deeper analysis of clustering patterns could
cast light on unobserved properties of BPMs.

QUADRUPOLE ERRORS PREDICTION
To compute the corrections, the measured data has to be

compared with the design machine. The deviations from
design have to be identified by special analysis methods
and compensated by improved machine settings according
to computed corrections [4, 10–13]. In terms of machine
learning, the corrections computation can be defined as a
regression problem that can be solved by training a model us-
ing past measurements and corresponding corrections [14].

Considering the problem of predicting the quadrupole
errors, supervised learning approach applying a set of re-
gression models is used. Given a set of features X =

x1, x2, ..., xm and target y, an estimator can learn a regres-
sion model or a non-linear approximation. As regression
methods we use Random Forest decision trees [15], Orthog-
onal Matching Pursuit (OMP) [16] and Multi-layer Neural
Network [17]. The regression models are trained and vali-
dated on two different datasets for nominal β∗=40 cm and
injection optics used in 2016. As input parameter we use
the differences between nominal model and simulated per-
turbed optics. The regression models are trained to predict
the quadrupole errors which produce the perturbations in the
input data. To validate the performance of different methods
shown in Table 1 we use the Mean Absolute Error (MAE)
and the explained variance as figures of merit.

Table 1: Performance of Applied Models
Injection optics

Model MAE [10−5m−2] Explained σ2

Random Forest 0.005 0.99
OMP 0.04 0.97
Neural Network 0.35 0.38

β∗= 40 cm
Model MAE [10−5m−2] Explained σ2

Random Forest 0.005 0.99
OMP 0.21 0.76
Neural network 0.33 0.47

Comparison of preliminary results on different optics
setting and data sets shows that Random Forest algorithm
achieves the most accurate prediction. The presented proto-
type demonstrates that a machine learning based approach is
promising and produces meaningful and consistent results.
For further improvements on prediction quality, different
model boosting techniques which construct ensembles with
higher capacity than individual models have to be investi-
gated. The simulation of training datasets including different
machine settings is required to train the model appropriately
and to ultimately produce predictions that could be used
during optics commissioning and machine developments.

CONCLUSIONS
The suitability of machine learning methods has been

clearly shown in the performed experiments. Considering
future accelerator projects that will require more challeng-
ing optics control, more powerful analysis methods will be
needed - machine learning techniques might become the
key technology to implement fast powerful data analysis
and discover new useful relations and features in the data.
The positive results presented in this work open more space
for further investigation and deeper analysis of appropriate
approaches.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF062

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

WEPAF062
1969

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



REFERENCES
[1] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic

particles in high-energy physics with deep learning”, Nature
Commun. 5, 4308 (2014).

[2] A. Aurisano et al., “A convolutional neural network neutrino
event classifier”, JINST 11 09, P09001 (2016).

[3] B. Everitt, S. Landau, M. Leese, and D. Stahl, “ Cluster
analysis”, 5th ed. Chichester: Wiley (2011).

[4] A. Langner and R. Tomás, “Optics measurement algorithms
and error analysis for the proton energy frontier”, Phys. Rev.
ST Accel. Beams 18 031002 (2015).

[5] T. Bach and R. Tomás, “Improvements for optics measure-
ment and corrections software”, CERN-ACC-NOTE-2013-
0010 (2013).

[6] R. Calaga and R. Tomás, “Statistical analysis of RHIC beam
position monitors performance”, Phys. Rev. ST Accel. Beams
7 042801 (2004).

[7] L. Malina et al., “Performance optimization of turn-by-turn
beam position monitor data harmonic analysis”, presented at
IPAC’18, Vancouver, Canada, paper THPAF045.

[8] Stuart P. Lloyd, “Least squares quantization in PCM”, IEEE
Transactions on Information Theory 28, p. 129-137 (1982).

[9] M. Ester, H. Kriegel, J. Sander, X. Xu, “A Density-based Al-
gorithm for Discovering Clusters in Large Spatial Databases
with Noise”, Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, AAAI
Press, 1996.

[10] R. Tomás, T. Bach, R. Calaga, A. Langner, Y. I. Levinsen, E.
H. MacLean, T. H. B. Persson, P. K. Skowronski, M. Strzel-
czyk, G. Vanbavinckhove, and R. Miyamoto, “Record low β

beating in the LHC”, Phys. Rev. ST Accel. Beams 15 091001
(2012).

[11] A. Wegscheider, A. Langner, R. Tomás and A. Franchi, “An-
alytical N beam position monitor method”, Phys. Rev. Accel.
Beams 20, 111002 (2017).

[12] T. Persson, F. Carlier, J. Coello de Portugal, A. Garcia-Tabares
Valdivieso, A. Langner, E.H. Maclean, L. Malina, P. Skowron-
ski, B. Salvant, R. Tomas, and A.C. Garcia Bonilla, ”LHC
optics commissioning: A journey towards 1% optics control”,
Phys. Rev. Accel. Beams 20 061002 (2017).

[13] R.Tomás, M. Aiba, A. Franchi, U. Iriso, “Review of linear
optics measurement and correction for charged particle ac-
celerators”, Phys. Rev. Accel. Beams 20 054801 (2017).

[14] E. Fol, “Evaluation of machine learning methods for LHC
optics measurements and corrections software”, Master thesis,
CERN-THESIS-2017-336.

[15] L. Breiman, “Random forests”, Mach. Learn. 45 (2001).

[16] R. Rubinstein, M. Zibulevsky, M. Elad, “Efficient Imple-
mentation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit”, Cs Technion 40 (2008).

[17] C.M. Bishop, “Neural networks for pattern recognition”, Ox-
ford University Press, USA (1995).

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF062

WEPAF062
1970

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools


