
HEPS HIGH-LEVEL SOFTWARE ARCHITECTURE PLAN*

P. Chu†, Y.S. Qiao, C.H. Wang, Institute of High Energy Physics, Beijing 100049, P. R. China
H.H. Lv, Shanghai Institute of Applied Physics, Shanghai 201800, P. R. China

Abstract
The High Energy Photon Source (HEPS) is a planned

ultra-low emittance synchrotron radiation based light
source which requires high precession control systems for
both accelerator and beamlines. Such kind of accelerators
will require extremely sophisticated high-level control
software for both accelerator and beamline operation to
achieve not only the demanded precision but also high
reliability. This paper outlines the high-level application
software architecture design including relational data-
bases, software platforms, and advanced controls with
machine learning (ML) techniques. Early plan for beam-
line control is also reported. For better quality control and
easy maintenance, the high-level applications will be built
upon matured software platforms. Also, the HEPS High-
Level Software team will collaborate with EPICS com-
munity for improving the software platforms.

INTRODUCTION
HEPS is a sub-100 pmrad emittance, about 1360 m

circumference 4th generation synchrotron light source
which is designed and constructed by the Institute of High
Energy Physics (IHEP), Beijing, China with a scheduled
completion date at the end of 2024. The number of devic-
es to be controlled, the required precisions, and the
amount of experimental data will be collected are all
unprecedentedly high. For such a large-scale light source,
the control systems as well as high-level software should
be proceeded with systematic approaches. Specifically,
the high-level architecture starts with a data centric de-
sign. The HEPS high-level software architecture design
considers not only for accelerator but also for optical
beamlines while many software packages can be shared
by both sides. Furthermore, data from both sides may
need to be correlated for future Big Data analysis.

As shown in Fig. 1, basically the HEPS high-level
software architecture can be divided into the followings:
databases which including relational and non-relational
ones, application programming interface (API) such as
online model，optimizer, services, and channel access
(CA) interface to EPICS control systems, and applications
in various forms like desktop, web, and mobile apps. With
this architecture design, each part can be replaced with
difference technologies or implementations as upgrade
may be necessary in the future. Also, because of the mod-
ular design and interchange ability for systems it is easy
to collaborate with other institutes or projects which may
have different system implementations. Details for each
part in the architecture will be described below. Beamline

control and programming language selections will also be
mentioned.

Figure 1: HEPS high-level software overview.

DATABASES
Any important data throughout the entire life cycle of

an accelerator, including both static and runtime data,
should be captured systematically and stored persistently.
In addition to the data storage, applications to utilize the
stored data are the foundations for increasing productivi-
ty, safety, and reliability. Based on the nature of the data,
the data applications, and run-time efficiency, the data can
be stored in either relational database (RDB) or other
forms such as files or noSQL-based databases. A few
databases needed for the present HEPS design and pre-
construction preparation are under development or al-
ready in use will be described in the following subsec-
tions. In general, these databases are developed inde-
pendently but with possible integration in mind. In the
future, depending on the needs and database performance,
one can link multiple databases together via either prima-
ry key/foreign key relationship or services. For most of
the database linkages, the device ID is the joint point. The
general procedure for many databases is first to fill a
template in Excel form for initial or bulk upload. Apache
POI [1] is applied as the Excel parser. Follow-up modifi-
cations in database can be done via a Web-based user
interface (UI).

Design Parameter Database
It is sometimes hard to keep track of all important

physics and equipment parameters consistently yet cor-
rectly for an accelerator during the busy design period. A
database for storing the essential HEPS parameters has
been established. The database schema was based on ESS
design [2] with necessary modifications to fit HEPS own
needs. An Excel template is for system managers to fill

* Work supported by the Chinese Academy of Science and the HEPS-TF
Project.
† chuzm@ihep.ac.cn.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF030

WEPAF030
1884

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

the parameters, and then a program parses the filled Excel
file and uploads the information to the database.

Figure 2: Design parameter database web UI.

The Design Parameter Database also has a web-based
UI which can perform parameter query with general
search functions as well as new data update. The front
page of the web UI is shown in Fig. 2.

Naming Convention Database
For a large accelerator project like HEPS, everything

has to be named according to strict rules or it is hard to
ever figure out what a name’s meaning. The HEPS Nam-
ing Convention will be applied to both accelerator and
beamline experiment instruments, but not applicable to
cables. As shown in Fig. 3, device names are composed
by system/subsystem (SSSS_BBBB), and device
(RII_DDDDQIII) with signal name extension
(TTTTIIII_XXXX).

The naming rules are stored in the database where de-
vice or signal names can then be generated programmati-
cally. The naming rules can be checked against the rules
and enforced while device and signal databases are being
processed.

Magnet Database
Magnets are among the most important components for

a charged particle accelerator. We would like to capture
and store all essential data regarding a magnet in a data-
base. At this moment, the HEPS magnet group is busy
with design and early prototype test work; therefore, the
Magnet Database is focused on these functions. The pre-
sent Magnet Database schema is shown in Fig. 4 which
includes support for a few particular magnet measurement
methods. It should be easy to add support for more meas-
urement methods at any time. Applications for this data-
base will provide magnet excitation curves for the control
system.

As magnets being installed and becoming part of the
accelerator, the magnet operation data will then be col-
lected and correlated to this magnet database which can

be analysed for better operation and maintenance purpos-
es. Again, the link between the Magnet Database and
operation database is through the device ID.

Equipment Database
An equipment database for storing all equipment in-

cluding spared parts is needed even for the preliminary
stage of HEPS, the Test Facility (TF). A schema cropped
from Integrated Relational Model of Installed Systems
(IRMIS) v3 [] serves as the starting point for this data-
base. Figure 4 shows the present IHEP implementation of
the equipment database.

Figure 4: Magnet database schema.

Lattice and Model Database
Lattice and Model Database is for keeping design lat-

tices and their corresponding model calculation data. The
Lattice and Model Database can accept various modeling
formats with property name-value pair design. The lattice
and model data is handled through Open XAL [

3

] API
which will be described in the Software Platforms below.

SOFTWARE PLATFORMS
As shown in Fig. 5, generally, application flow can be

categorized into three layers: data, software API or ser-
vices, and applications. For better software reusability,
functions appears in multiple applications should be cod-
ed as regular callable API or service API form in the mid-
dle layer. Due to the nature of the functions, it is better to
separate them in three groups so they don’t mixed togeth-
er and lose the flexibility: control system API, physics
and general-purpose API, and machine learning API.
Details for these APIs will be described in the following.

Figure 3: HEPS naming convention.

4

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF030

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

WEPAF030
1885

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 5: Software platform diagram.

Control System Connectivity
HEPS accelerator as well as optical beamline is based

on EPICS control systems. Instead that everyone has to
deal with EPICS client calls, it is better to provide a set of
easy API which can handle all the tedious work such as
connection exceptions and operation loggings. If there is
any need for another control system, we can simply re-
place the EPICS wrapper with a different one.

Physics and General-Purpose API
Physics API provides physics specific functions such as

online model while general-purpose API supports useful
operations like parameter scan. Java-based Open XAL []
toolkit includes not only definitive accelerator data struc-
ture but also quite complete functions for most accelera-
tors. On the other hand, beamlines can have a similar
platform for their physics.

Machine Learning API
As the artificial intelligence (AI) and machine learning

(ML) is making huge progress in many fields, it is also
gaining attention for accelerators and accelerator related
Big Data research. At this moment, the doorstep for utiliz-
ing AI tools is too high for any physicist who is not a
seasoned AI player. It is convenient to provide a set of
API to simplify ML application development. For in-
stance, APIs for pre-processing raw data prior to applying
the actual computation algorithms, and the computation
result showing in visual form for easy read should be
provided. All these can be done with simple APIs to cut
development effort. Figure 6 illustrates the data cleaning
processes in such a platform. The ML API should also
provide wrappers for several popular open-source ma-
chine learning platforms such as Scikit-Learn and Ten-
sorFlow which, conveniently, are both support Python
APIs. One can switch among ML platforms as well as
algorithms for easy try-out and tests. The ML API will
also be responsible for converting data format to suit
these popular ML platforms.

Figure 6: Machine learning API for data cleaning.

APPLICATION PLATFORMS
For quick prototyping and development, applications

are built upon platforms. If applications are well designed
in Model-View-Controller (MVC) architecture, it is easy
to share the model and controller codes between desktop
and mobile versions of the same applications. The soft-
ware platforms and APIs mentioned above will all have
Java and Python API support for application develop-
ment. As for mobile devices getting more and more popu-
lar, web and mobile app support will be provided and
considered equally important as the desktop support. One
can then easily assemble an application, regardless it is a
desktop or mobile application.

BEAMLINE CONTROL
For better manpower resources sharing, the HEPS opti-

cal beamline control is also handled by the same group as
the accelerator controls. Also, it is not practical to have
each beamline possessing its own database experts and
handle all computing needs, for example. Many tools and
platforms built for the accelerator can also apply to the
beamlines. Standards like naming conventions and EPICS
supported devices are also shared.

The beamline data may be much more structured than
the accelerator data. Therefore, EPICS 7 which supports
complicated data structures is being considered as the
data protocol for packaging the beamline and experiment
data. Still, the data structure has to be compatible for
future mobile applications.

CONCLUSION
The HEPS high-level software architecture has been

sketched. Modern technologies will be applied to the
actual implementation. With tremendous amount of work,
it is fortunate that several domestic accelerator projects in
China which are also at about the same stage as HEPS
will be collaborating closely to share the development
burden. For the software shareable between accelerators
and optical beamlines as well as experiment stations,
collaborations are also formed. Starting from project
supports like databases and project management tools, the
software team is also starting client application UI devel-
opment such as mobile and web interfaces. All the data-
bases are saved in GitHub repository for easy collabora-
tion access [5]. This overall high-level software architec-
ture design gives us the most flexibility and efficiency for
software development yet ensure high-quality and reliable

4

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF030

WEPAF030
1886

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

software products. Also the design is data centric which
can be extended for future Big Data analysis.

ACKNOWLEDGEMENTS
The authors would like to thank the Controls and Ex-

perimental Computing Support Groups of China Spalla-
tion Neutron Source, the HEPS Beamline Controls
Group, and many other members of the IHEP Accelerator
Center colleagues for fruitful discussions.

REFERENCES
[1] http://poi.apache.org/.

[2] K. Rathsman et al., “ESS parameter list database and web
interface tools”, in Proc. 2nd Int. Particle Accelerator Conf.
(IPAC’11), San Sebastian, Spain, Sep. 2011, pp. 1762-1764.

[3]

J. Galambos, et al, “XAL application programming struc-
ture”, in Proc. Particle Accelerator Conf. (PAC’05),
Knoxville, TN, USA, May 2005, pp. 79-81.

[4]

http://irmis.sourceforge.net/.

[5] https://github.com/AcceleratorDatabase/.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF030

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

WEPAF030
1887

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

