MEASUREMENT OF THE RF REFERENCE PHASE STABILITY IN THE SUPERKEKB INJECTOR LINAC

N. Liu[†], T. Miura¹, T. Matsumoto¹, F. Qiu¹, S. Michizono¹, SOKENDAI, Kanagawa, Japan D. Arakawa, H. Katagiri, Y. Yano, ¹KEK, Tsukuba, Japan

Abstract

The SuperKEKB injector is a more than 600 m J-shaped LINAC. The requirement of the RF phase reference stability is 0.1 degree (RMS) at 2856 MHz for SuperKEKB PHASE-2 commissioning. In order to clarify and improve the reference line performance, the RF reference phase stability is measured. The phase noise of the RF reference at each sector is shown in this paper. A new phase monitor system is implemented to measure the short-term stability and long-term drift due to the temperature and humidity fluctuations in the klystron gallery.

INTRODUCTION

The SuperKEKB injector LINAC is utilized as a multipurpose injector, which delivers 7 GeV electron beams to the KEKB high-energy ring (HER) and 4 GeV positron beams to the low-energy ring (LER) and provides electron beams of 2.5 GeV and 6.5 GeV for the Photon Factory (PF) and the Photon Factory Advanced Ring for pulse x-rays (PF-AR), respectively [1]. The J-shaped LINAC comprises of 124.8 m long and 488.3 m long straight beam lines, which consist of 8 sectors (sector A-C and 1-5). The layout of the RF reference distribution for the SuperKEKB Injector LINAC is shown in Fig. 1. Sector A consists of two subharmonic bunchers (SHB1 is operated at 114 MHz and SHB2 is operated at 571 MHz), an S-band (2856 MHz) pre-buncher, and a buncher [2, 3]. The other sectors are operated at 2856 MHz as the regular accelerating sectors, which comprise of the sub-booster klystron (SBK)/solidstate amplifier (SSA), high-power klystron, pulse compressor, and normal conducting accelerator structure. Reference signals of three different frequencies (114 MHz, 571 MHz, and 2856 MHz) are generated by the Master Oscillator (MO, 571 MHz) system [4]. The 2856 MHz reference signal (REF) is delivered to the SBK at each sector through long coaxial cables (sector A-C,1) or optical links (sector 2-5) [4]. The requirement of the energy spread for SuperKEKB injector LINAC is 0.1% in [5] so that the RF phase reference stability is estimated with the requirement of 0.1 degree (RMS) at 2856 MHz. In order to clarify the REF phase stability, the RF phase noise, the short-term stability and the long-term phase drift are measured.

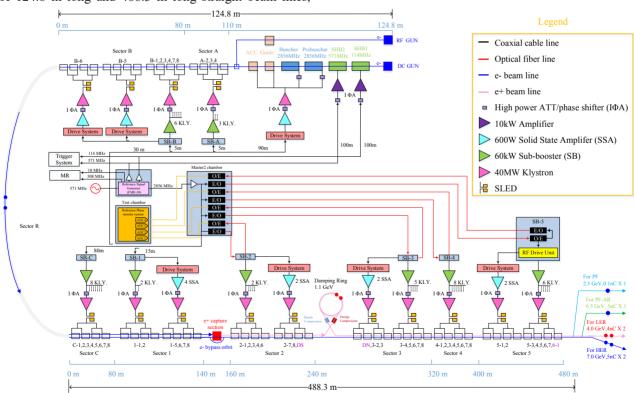


Figure 1: Layout of the RF reference distribution for the SuperKEKB Injector LINAC.

† liuna@post.kek.jp

THPML073

RF PHASE NOISE MEASUREMENT For the optical link, the 2856 MHz REF signal is con- $\frac{1}{2}$ and transmitted by the single-mode phase stabilized optical fiber (PSOF). Then, the optical signal is converted into a ≗ 2856 MHz electrical signal by an optical receiver (O/E). Joint This converted electrical signal is used as the local oscilla- $\frac{e}{2}$ tor (LO) for the Low-Level Radio Frequency (LLRF) control system and the RF monitor in each sector. The electri-cal and optical components are inside the temperature-sta-bilized chamber without humidity control, except for the long PSOF, which is distributed in the klystron gallery. The PSOF was provided by Furukawa Inc., and the propagation delay temperature coefficient is 5 ps/km/°C from -10 °C to 35 °C in the specification. TAMAGAWA E/O and O/E are installed in sector 2-5.

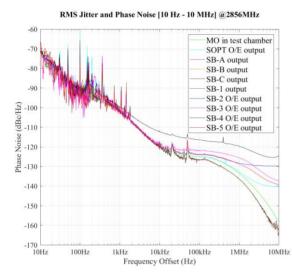


Figure 2: Single side-band phase-noise power spectrum of 2856 MHz REF of the optical links.

delay tempe 35 °C in the		`				
installed in	sector 2-	5.				
60	RMS Jitter a	nd Phase N	oise [10 Hz	z - 10 MHz] @	02856MH	e e
-00				MO	in test char	nber
-70				SOP SB-A	T O/E outp output	out
-80 - ***	-80			SB-B output SB-C output SB-1 output		
-90						
P -100	I A A A A A A A A A A A A A A A A A A A				O/E outpu	it it –
IBc/I						
oise (6						1
2 -120			-			
-130 -				11		
-140 -						
-150 -					/	
۰ ۱						
-160 -						No.
-160						Mart
-160 -170 10Hz	100Hz	lkHz Frequ	10kHz ency Offset	100kHz t (Hz)	lMHz	10MHz
Figure 2: Si 2856 MHz	^{100Hz} ingle side REF of t	IkHz Frequ e-band he optio	^{10kHz} ency Offset phase-1 cal link	^{100kHz} t (Hz) noise po ts.	IMHz wer sp	10MHz
⁻¹⁶⁰ -170 10Hz 2856 MHz Table 1:	^{100Hz} ingle side REF of the Phase No	IkHz Frequ e-band he optio	^{10kHz} ency Offset phase-1 cal link Sector	^{100kHz} t (Hz) noise po ts. t A-5 [10	^{IMHz} wer sp) Hz–1	IOMHz ectrum o 0 MHz]
Figure 2: Si 2856 MHz Table 1: Signal	^{100Hz} ingle side REF of the Phase Notes	IkHz Freque e-band he option bise for Po	^{10kHz} ency Offset phase- cal link Sector	^{100kHz} t(Hz) noise po ts. t A-5 [10 Jitte	^{IMHz} wer sp) Hz–1 r	10MHz ectrum of 0 MHz] Phase
Figure 2: Si 2856 MHz Table 1: Signal	^{100Hz} ingle side REF of t Phase No	IkHz Freque e-band he optio oise for Po [d]	^{10kHz} ency Offset phase-: cal link Sector wer Bm]	100kHz t (Hz) noise po ts. t A-5 [10 Jitter [fs]	^{IMHz} wer sp) Hz–1 r	IOMHZ IOMHZ IOMHZ] O MHZ] Phase Noise [°]
⁻¹⁶⁰ -170 2856 MHz Table 1: Signal 2856 MHz	^{100Hz} ingle side REF of t Phase No z REF	IkHz Frequ e-band he optio pise for Po [d] +(10kHz ency Offset phase cal link Sector wer Bm] 5.47	100kHz t(Hz) noise po ts. t A-5 [10 Jitten [fs] 106.0	^{IMHz} wer sp) Hz–1 r <u>N</u> 8	IOMHZ IOMHZ IOMHZ] OMHZ] Phase Noise [°] 0.109
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F	^{100Hz} ingle side REF of tl Phase No z REF z REF E output	IkHz Freque c-band he optio Dise for Po [d] +(+2	10kHz ency Offset phase-1 cal link Sector wer Bm] 5.47 4.39	100kHz (Hz) noise po (s. r A-5 [10 Jitter [fs] 106.0 159.5	^{IMHz} wer sp) Hz–1 r R 8 8	IOMHZ IOMHZ O MHZ] Phase Noise [°] 0.109 0.164
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/E SB-A outp	^{100Hz} ingle side REF of tl Phase No z REF E output put	IkHz Frequ e-band he optio Dise for Po [d] +c +2 -8	^{10kHz} ency Offset cal link Sector wer Bm] 5.47 4.39 8.56	100kHz t(Hz) noise po ts. t A-5 [10 Jitter [fs] 106.0 159.5 103.0	^{1MHz} wer sp) Hz–1 r <u>P</u> 8 8 3	10MHz ectrum of 0 MHz] Phase Noise [°] 0.109 0.164 0.106
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-B outp	100Hz ingle side REF of the Phase Notes z REF z REF z output out	IkHz Freque e-band he option pise for Po [d] +(+2 -{ -{	^{10kHz} ency Offset cal link Sector wer Bm] 5.47 4.39 3.56 9.16	100kHz t(Hz) noise po ts. t A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33	^{1MHz} wer sp) Hz–1 r N 8 8 3 3	10MHz ectrum of 0 MHz] Phase Noise [°] 0.109 0.164 0.106 0.101
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-B outp SB-C outp	100Hz ingle side REF of th Phase No z REF E output out out	IkHz Freque e-band he optic pise for Po [d] +c +2 -5 -1	^{10kHz} ency Offset cal link Sector wer Bm] 5.47 4.39 3.56 9.16 1.38	100kHz (Hz) noise po s. f A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99	IMHz wer sp) Hz–1 r 8 8 8 3 3 9	IOMHZ IOMHZ IOMHZ] Phase Noise [°] 0.109 0.164 0.106 0.101 0.094
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-B outp SB-C outp SB-1 outp	100Hz ingle side REF of th Phase No z REF E output out out out	$\frac{11 \text{ HHz}}{\text{Frequ}}$ E-band he option Dise for Po [d] +(c) +2 -5 -1 -1	^{10kHz} ency Offset phase	100kHz (Hz) noise po ts. t A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99 93.13	1MHz wer sp) Hz–1 r N 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3	1000Hz ectrum of 0 MHz] Phase Noise [°] 0.109 0.164 0.106 0.101 0.094 0.096
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-B outp SB-C outp SB-1 outp SB-2 O/F	100Hz ingle side REF of th Phase No z REF E output out out out out out	IkHz Freque e-band he optio Dise for Po [d] +c +2 -5 -5 -1 -1 -1 -5	^{10kHz} ency Offset phase- cal link Sector wer Bm] 5.47 4.39 3.56 9.16 1.38 2.32 3.90	100kHz t(Hz) noise po ts. t A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99 93.13 134.6	IMHz wer sp) Hz–1 r N 8 8 8 3 3 3 3 7	10MHz ectrum of 0 MHz] Phase Noise [°] 0.109 0.164 0.106 0.101 0.094 0.096 0.138
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-C outp SB-C outp SB-1 outp SB-2 O/E SB-3 O/E	100Hz ingle side REF of th Phase No z REF E output out out out out out	IkHz Freque c-band he optic pise for Po [d] +c -2 -1 -1 -8 -1 -1 -8 -1	^{10kHz} ency Offset cal link Sector wer Bm] 5.47 4.39 3.56 9.16 1.38 2.32 3.90 1.25	100kHz (Hz) noise po 5. A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99 93.13 134.6 127.0	IMHz wer sp) Hz–1 r N 8 8 3 3 3 3 3 7 6	0 MHz] ectrum of 0 MHz] Phase Noise [°] 0.109 0.164 0.106 0.101 0.094 0.096 0.138 0.131
Figure 2: Si 2856 MHz Table 1: Signal 2856 MHz SOPT O/F SB-A outp SB-B outp SB-C outp SB-1 outp SB-2 O/E SB-3 O/E SB-4 O/F	100Hz ingle side REF of th Phase No z REF E output out out out out out out out	IkHz Freque e-band he optic pise for Po [d] +c -2 -1 -1 -1 -8 -9 -1 -1 -8 -9 -1 -1 -1 -8 -1 -1 -1 -1 -1 -1 -1 -1	^{10kHz} ency Offset cal link Sector wer Bm] 5.47 4.39 8.56 9.16 1.38 2.32 8.90 1.25 8.22	100kHz (Hz) noise po s. A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99 93.13 134.6 127.0 216 3	IMHz wer sp) Hz–1 r N 8 8 3 3 3 9 3 7 6 5	DOMH2 DOMH2 DOMH2 Dectrum of 0 MH2 Phase Noise [°] 0.109 0.164 0.106 0.101 0.094 0.096 0.138 0.131 0.222
delay tempo 35 °C in the installed in -60 -70 -80 -90 (H)00 -10	100Hz ingle side REF of th Phase No z REF E output out out out out out out output output output	IkHz Freque e-band he optio pise for Po [d] +(+2 -5 -1 -1 -1 -5 -1	10kHz ency Offset cal link Sector wer Bm] 5.47 4.39 3.56 9.16 1.38 2.32 3.90 1.25 3.22 8.00	100kHz (Hz) noise po ts. t A-5 [10 Jitter [fs] 106.0 159.5 103.0 98.33 90.99 93.13 134.6 127.0 216.3 102.8	IMHz wer sp) Hz–1 r N 8 8 3 3 3 7 6 5 9	IOMH2 IOMH2 IOMH2] Phase Noise [°] 0.109 0.164 0.106 0.101 0.094 0.096 0.138 0.131 0.222 0.107

work The phase noise of the transmitted 2856 MHz REF in this . each sector was measured using the Signal Source Analyzer (SSA) (Agilent E5052B). Fig. 2 shows the single from 1 sideband phase-noise power spectrum of the 2856 MHz REF, 1 m short optical link (SOPT) and the forward signal (O/E output) from 2856 MHz generator side to sector A-5.

SHORT-TERM AND LONG-TERM PHASE **STABILITY MEASUREMENT**

Phase Monitor System for Sector 2 to 5

In order to monitor the 2856 MHz REF phase drift of the optical link during the beam operation, a similar configuration of optical link is used to deliver the converted electric RF signal back from sector 2-5 to 2856 MHz MO side. A new phase monitor system is implemented in LINAC. The schematic diagram of the monitor system including LO generation is shown in Fig. 3. The S-band 2856 MHz reference signal is down-converted to intermediate frequency (IF, 14.28 MHz) by the LO (2870.28 MHz). The IF signal is sampled by a 16-bit ADC with a sampling rate (SR) of 114.24 MSPS and processed in the FPGA board based on µTCA. When the SR and IF signals satisfy the condition $N \cdot SR = L \cdot IF$ (L is an integer greater than 3 and N is an integer), the IQ component of the sampled IF signal can be calculated by the following equation [6-7].

$$I = \frac{2}{L} \sum_{n=0}^{L-1} x[n] \cos(\frac{2\pi \cdot N}{L} \cdot n)$$
$$Q = \frac{2}{L} \sum_{n=0}^{L-1} x[n] \sin(\frac{2\pi \cdot N}{L} \cdot n)$$

where x[n] is the sampled signal. Here, L = 8 and N = 1

Take the system latency and the ADC sampling rate limitation into consideration, $SR = 8 \cdot IF$ is selected. The I/Q signals are filtered by the digital infinite impulse response low-pass filter (IIR LPF) with 100 kHz bandwidth to suppress the ADC noise. Then the amplitude (A) and phase (ϕ) of the IF signal is calculated with $A = \sqrt{I^2 + Q^2}$ and $\varphi =$ $\tan^{-1}(Q/I)$.

The injector LINAC is operated in the pulse mode and the reference phase of the injector is changed depending on the injection mode of HER/LER at 50 Hz. The short-term and long-term data taking should be synchronized with the beam trigger 50 Hz, and should exclude the phase changing timing. The optical link returned back signals from sector 2-5 (SBxxOPTR) are measured by the ADC with100 kHz bandwidth IIR LPF. The 2856 MHz REF signal is also measured to detect the monitor system drift including frequency divider, mixer, 2870 MHz band pass filter (BPF) and the S-band amplifier. The optical link phase stability is processed to reject the phase drift of the monitor system itself. All the RF components of the monitor system are inside the temperature-stabilized chamber with 0.1 °C peakpeak stability. The 1 ms short-term stability is summarized in Table 2. All the short-stability values are within 0.1 deg. RMS except sector 5. We are trying to find out the reason.

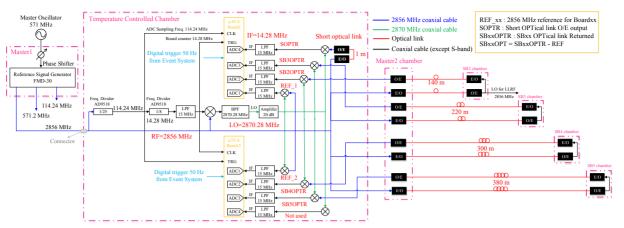


Figure 3: Schematic diagram of the 2856 MHz RF reference phase-monitor system based on µTCA.

R	REF	Sector2	Sector3	Sector4	Sector5
[d	leg.]	[deg.]	[deg.]	[deg.]	[deg.]
0.	.028	0.055	0.068	0.067	0.22

In order to study the 2856 MHz reference phase dependence with humidity and temperature, the long-term phase drift of the optical link from the 2856 MHz reference to sector 2-5 (round way), the humidity fluctuation and the temperature drift in the klystron gallery are monitored for 7 days.

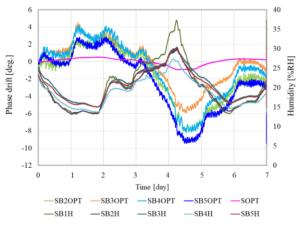


Figure 4: Long-term phase drift of the reference phase and the humidity fluctuation in the gallery.

Figure 4 shows the long-term phase drift and the humid-ity fluctuations in the klystron gallery. The humidity fluctuation is around 25%RH and almost in the same trend for sector 2-5. The phase drifts of the short and long optical links are 1.5° and 12° , respectively. We found that the phase drift depends on the humidity fluc-tuation clearly. The short optical link (SOPT) consists of 1m PSOF and a pair of E/O and O/E. It is in the tem-perature stabilized chamber but no humidity control. So the phase drift of SOPT indicates the phase drift of E/O and O/E module due to the humidity fluctuation. The phase drift of the long optical link (LOPT) for each sector include 2 pairs of E/O and

O/E modules and the long PSOF. Figure 5 shows the phase drift and the temperature drift. Because the temperature drift trends are very dif-ferent from sector to sector, the temperature dependence is not so clear.

3.0 licence (© 2018). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

ВΥ

the CC

terms of

under the

used

ę

may

work

Content from this

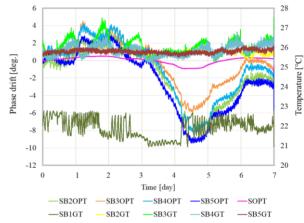


Figure 5: Long-term phase drift of the reference phase and the temperature fluctuations in the klystron gallery.

CONCLUSION

The phase noise of the 2856 MHz RF phase reference was measured, and all the values of RMS jitter were found to be less than 220 fs. A new phase monitor system based on µTCA is implemented to monitor the RF reference phase stability for sector 2-5. All the shortterm phase stability values for sector 2-5 are less than 0.1 deg. RMS, except SB5. But the reason is not clear for us. The long-term phase drift is more than 10 degrees. We found that the phase drift depends on the humidity fluctuation clearly. A feedback control system is necessary for the RF reference phase stabilization to fulfill the requirement of the SuperKEKB injector LINAC. Based on the present system configuration, a feedback system, which includes a wavelength-division multiplexing device and variable optical delay line, is proposed [8-9]. The performance evaluation of the feedback system is in progress.

REFERENCES

- publisher, and DOI. 1] M. Akemoto et al., "The KEKB injector linac", Prog. Theor. Exp. Phys., 03A002, 2013.
- [2] T. Kamitani et al., "Injector linac upgrade for SuperKEKB", in Proc. LINAC'10, Tsukuba, Japan, work. Sep. 2010, paper MOP011, pp. 70-72.
- maintain attribution to the author(s), title of the [3] Y. Yano et al., "RF control system for SuperKEKB injector linac", in Proc. 11th Annual Meeting of the Japanese Society of accelerator (PASJ'14), Aomori, Japan, Aug. 2014, paper SAP054, pp. 624-628.
- 4] T. Matsumoto et al., "Low-level RF System for the SuperKEKB Injector LINAC", presented at the 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, Canada, May 2018, paper WEPAK017, this conference.
- [5] K. Furukawa, "Injector Linac Experiences at KEKB/SuperKEKB", Rome, Italy, Apr. 2016.
- M. Grecki, et al., "Estimation of IQ Vector Components of [6] RF Field Theory and Implementation", in Proc. 12th Mixed Design of Integrated Circuits and Systems (MIXDES'05), Cracow, Poland.
- [7] S.N. Simrock, et al., "Considerations for the Choice of the Intermediate Frequency and Sampling Rate for Digital must RF Control", in Proc. European Particle Accelerator Conference (EPAC'06), Edinburgh, Scotland, 2006, paper TUPCH191, p. 1462.
- 8] T. Kobayashi et al., "RF reference distribution system for the 400-MeV proton linac of the KEK/JAERI joint project", in Proc. LINAC'02, Gyeongju, Korea, Aug. 2002, paper MO463, pp. 187-189.
- 9] T. Naito et al., "RF reference distribution using fiber-optical links for KEKB accelerator", in Proc. PAC 2001, Chicago, US, June 2001, pp. 791-793.

© Content from this work may be used under the terms of the CC BY 3.0 licence (© 2018). Any distribution of this work THPML073 4818