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Abstract
An automated beam-setting optimization application has

been implemented on top of FAIR’s control system software
stack based on CERN’s LSA framework. The optimization
functionality is built using the Jenetics software library im-
plemented in Java. Tests of the software with beam have
been performed at the CRYRING@ESR ion storage ring.

INTRODUCTION AND BACKGROUND
In recent years, with advances in machine learning and

evolutionary algorithms, a number of software libraries be-
came available, allowing researchers and application pro-
grammers to utilize these libraries for their purposes. In
2017 we successfully investigated if genetic algorithms can
be applied in the context of accelerator optimization [1, 2].
Despite the promising results of this prototype, it came with
some disadvantages. The prototype driving and reading
device data was programmed in Python and is communi-
cating to the low level FESA stack of the FAIR control sys-
tem [3] bypassing the higher levels of the FAIR control
system [4] based on the LHC Software Architecture (LSA)
implemented in Java [5]. We finally decided to implement
an application in JAVA built on the high-level LSA-layers
and the open-source genetic-algorithm library Jenetics [6].

For testing the software with beam we used the ion source
and injector of the CRYRING@ESR ion storage ring, which
serves besides its main purpose as machine for atomic and
nuclear physics experiments as test bench for the FAIR con-
trol system [7].

GENETIC ALGORITHM
In computer science and operations research, a genetic al-

gorithm (GA) is inspired by the process of natural selection.
Genetic algorithms are commonly used to generate high-
quality solutions to optimization and search problems by re-
lying on bio-inspired operators such as mutation, crossover
and selection [8]. The optimization problem can be under-
stood to find the global extreme (minimum or maximum)
of an unknown multi-dimensional function f (x), where
x = {x1, ..., xN } is a vector of parameters xi . In terms of an
accelerator xi is one setting value of a device, in terms of
the control system one LSA setting parameter.

In GA the term "gene" defines one single parameter of
the optimization problem together with a value range and
current value. The Jenetics’ DoubleGene -class was used to
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model devices parameters. A "chromosome" is a parameter-
vector of K genes, where in our context K is always 1, which
is a boundary condition imposed by Jenetics. A "genotype"
is a vector of L chromosomes, where the specification (type,
ranges) of the individual genes may differ from chromosome
to chromosome, but not within one chromosome. In the
actual implementation, we modeled a set of L accelerator
devices to be controlled by the genetic algorithm as a geno-
type of L Jenetics’ DoubleChromosome instances with one
DoubleGene each. The "genotype" is defined as one con-
crete value set of chromosomes/genes, i.e. one set of LSA
trim values, A "population" is a collection of N so called “in-
dividuals”, where each individual is defined by its genotype.
Furthermore, each individual is characterized by its “fitness”,
which is the actual function value to one genotype. In terms
of accelerators, the fitness is interpreted as the readout value
of a beam-diagnostic instrument. A genotype together with
its fitness function is called “phenotype”.

SOFTWARE ARCHITECTURE
A JAVA application “Device-Scanner” has been devel-

oped, which communicates through the top level software
layer of the FAIR control system [5]. To achieve flexibility
and extensibility, the integration of the genetic algorithm
into Device-Scanner was realized via a software interface
ScanAlgorithmIF which allows future algorithms to be
integrated too. The management of the actual access to the
LSA- and JAPC layer (trimming/readout) is encapsulated
in the Device-Scanner framework, so the developer of an
“algorithm” does not have to care about these aspects and
can focus on the development of the algorithm. The Jenet-
ics framework is called in a class GeneticScanner im-
plementing ScanAlgorithmIF. The three most important
methods of this class are initAlgorithm(...) which
builds the genes, chromosomes and gentotype required
by the genetic algorithm, furthermore it instantiates the
Jenetics Engine<DoubleGene, Double> engine. The
method fitness(Genotype<DoubleGene> genotype)
implements the actual calls to the outside framework. It trig-
gers setting of trims and readout of beam diagnostic instru-
ments and returns this value to the Jenetics framework, which
interprets this value as the “fitness”. performScan(...)
starts the actual generation of setting values by Jenetics and
the control of the scanning process.

ENVIRONMENTS FOR TESTING
For the purposes of testing the optimization function with-

out beam it is desirable to use a multi-dimensional function
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which has only one global maximum and minimum and is
valid over a large range of values. We realized these require-
ments by the following function, which is a derivative of
Rastrigin’s function [9]:

f (x) =
N∏
i=1

xi +
N∑
i=1

x3
i sin2(0.1 π xi) − (

N∏
i=1

xi) cos(0.5π xi)

Figure 1: 2-dimensional example-plot of the function in the
range [−20 ≤ xi ≥ +20] used for testing the implementation
of the genetic algorithm without beam.

The function shown for 2 parameters in Fig. 1 serves
as virtual “readout device” during the tests without beam.
The code is processed in the same way as with real readout
devices, the only difference is that the actual trim of settings
is suppressed if the test -“device” is used.

Like in our earlier publication [2] we performed tests
with beam using the local injector of the CRYRING@ESR
ion storage ring comprising most important devices of an
accelerator such as dipole, quadrupole magnets, electrostatic
elements, an RFQ-linac, etc. The tests were performed using
a 40 keV deuterium beam from the local ion source. The ion
source produced an ion beam with a total intensity between
300 and 800 µA. Almost 90 per cent of this mixture was D+2 ,
the remaining ten per cent dominated by D+.

Two scenarios have been used for the test of the algo-
rithm: 1) Find the more intense D+2 mass peak detected on
the Faraday cup within a broad parameter range of the mass
separation magnet, which also covers the less intense D+

peak. 2) Optimize the beam intensity of a single ion species
on the Faraday cup by tuning the dipole magnet in only a
small scan range, but additionally tuning the electrostatic
quadrupole doublet lenses before and the two magnetic steer-
ers behind the mass separator magnet, see Fig. 2. These five
devices can be controlled via 9 LSA-parameters: currents
applied to the magnets, 4 voltages applied to the first electro-
static lens, and 2 voltages applied to the second electrostatic
lenses (see Fig. 2).

To minimize the influence of the ion source fluctuations
on the tuning result, instead of the beam intensity, the trans-
mission through the beamline has been evaluated by normal-
izing the beam current measured on the Faraday cup after
the mass separator magnet to the total beam current from

the ion source measured with a current transformer after the
source.

Figure 2: CRYRING@ESR ion source and low energy beam-
line with elements/devices used to perform the tests of the
genetic algorithm with beam.

EXPERIMENTAL RESULTS
The first test scenario “Broad range of single parameter” is

performed by varying the current through the dipole magnet.
To qualify the performance of the genetic algorithm, three
aspects are of interest: 1) transmission through the magnet,
2) time to complete the task, 3) does the genetic algorithm
converge on a local or the global maximum?

The test was performed in two steps: first a mass spectrum,
i.e. measured signal on the Faraday cup versus dipole current
in the range of 15-30 A was taken with a resolution of 0.05 A.
The peak of the D+2 signal has a width of about 0.2 A. In
a second step, a genetic optimization was performed in the
same current range.

The result of the genetic optimization is shown in Fig. 3,
where two parameters are plotted against the number of
steps (abscissa): current through the dipole magnet , i.e.
LSA-parameter (blue, right ordinate) and transmission, i.e.
the “fitness” (red, left ordinate). Obviously the algorithm
converges to one current value after about 120 steps. The
transmission still fluctuates which is due to ion source in-
stabilities which cannot be mitigated by normalizing to the
current transformer.

This test scenario showed that - most important of all - the
genetic algorithm converged in the global maximum (= the
D+2 − peak). The performance in terms of transmission was
comparable to what the standard mass scan revealed. The
performance in terms of time was comparable to determining
the D+2 -peak via a mass scan in the broad scan range.

The test scenario “beamline optimization” was performed
in two steps: scanning of parameters in broad scan ranges,
extract corrdidors of “good” settings and scan again with
more narrow ranges. In the first step, the beamline devices
were scanned in broad ranges: the mass separator magnet
+/- 1 A around the D+2 -peak determined earlier. The six volt-
ages applied to the electrodes of the electrostatic quadrupole
lenses in a range of +/- 500 V around previously known
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Figure 3: Plot of the transmission against number of steps
in a genetic scan. Note that the plot has two y-axes: to the
left the transmission in %, to the right the current to power
the dipole magnet.

“good” settings, which equals to 1/4th of the maximum volt-
age range of these devices of 0-4000 V. The two steerer
magnets were scanned in the range from -1 A to +1 A, half
of the maximum current. The settings of the genetic scanner
were rather “aggressive” (e.g large values for mutation rate)
to achieve quick exploration of the large parameter space.
This approach did not converge within the given span of
time and was terminated manually. Two factors influenced
the result: the strategy led to large jumps in the parameter
values and as a consequence transmission, making it hard for
the algorithm to converge smoothly towards the maximum.
Furthermore, the performance of the ion source, especially
instable plasma conditions play a crucial role, as it introduces
non-deterministic transmission fluctuations which cannot
be coped with by the algorithm without further measures.

Nevertheless, the data collected during this scan contains
valuable information as input for a second optimization step.
In a “postmortem” analysis of the data, one can extract corri-
dors of good settings for each of the parameters involved in
the scan. This can be achieved by analyzing the setting val-
ues distributions from the first step show pronounced peaks
at high transmission. The good setting corridors determined
in this way can lateron be used to reduce the scan ranges in a
second iteration of genetic scanning. Currently, this step has
to be done manually but should be automated in the future.
With the narrowed scan ranges and less aggressive algorithm
settings (low mutation rate), the algorithm converges, but
slowly as shown in Fig. 4. The number of trims send to
the hardware was 1200, which corresponded to about 135
minutes of scanning.

Two factors hampered - again - quicker convergence of
the algorithm: with +/- 1 A around the mass peak, the scan
range of the mass separator magnet was chosen too large and
the ion source caused non-deterministic fluctuations in the
transmission. Admittedly the test scenarios did not consider

Figure 4: Converged genetic scan driving 9 LSA parameters
in narrow scan ranges. The scan reached the final value after
22 generations. Note that the sparks in the plot (values above
9) are due to fluctuations of the ion source

physics input on reasonable scan ranges which would have
been the case in real-life operation. Furthermore, in real-life
operation it would have been possible to quicken the process
by stopping the algorithm manually after if reached stable
setting (approximately after half of the scan time) and to
perform the histographic analysis described before.

CONCLUSION AND OUTLOOK
With the prototype implementation presented in this paper,

we are able to provide an end-user application exploiting the
genetic algorithm framework Jenetics to optimize unknown
beamline settings through the LSA framework of the FAIR
control system. Tests featuring a mass separator magnet
and simple ion optical elements in the injector beamline of
CRYRNG@ESR showed that the Jenetics framework is able
to drive the corresponding devices in a way that the algorithm
converges at a global maximum based on Faraday cup read-
ings. The genetic scanning approach seems to be useful for
beamline “exploration”, e.g. determine good beamline set-
tings in situations where estimated settings are only known
from simulations, extrapolation, etc. Furthermore, the ge-
netic algorithm has potential to reduce the “human factor”
in beamline optimization, which is influenced by operator
skills and experience, concentration level at the end of a
shift, etc.

Looking forward, we envisage the following steps to im-
prove the Jenetics-driven beamline optimization: systematic
studies of the influence of the various parameters param-
eterizing the Jenetics algorithm need to be performed to
determine optimal settings for the purpose of optimizing
beamline settings most efficiently and effectively. Further-
more, the algorithm shall be applied to the more complex
environment of the storage ring as such including higher
level beam physics parameters such as beam energy match-
ing of the ring, tune, chromaticity, etc.
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