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Abstract

Traditional finite-difference particle-in-cell methods for

modeling self-consistent space charge introduce non-

Hamiltonian effects that make long-term tracking in stor-

age rings unreliable. Foremost of these is so-called grid

heating. Particularly for studies where the Hamiltonian in-

variants are critical for understanding the beam dynamics,

such as nonlinear integrable optics, these spurious effects

make interpreting simulation results difficult. To remedy

this, we present a symplectic spectral space charge algorithm

that is free of non-Hamiltonian numerical effects and, there-

fore, suitable for long-term tracking studies. We present

initial results demonstrating the implementation of the algo-

rithm, using a spectral representation of the fields and macro

particles to preserve Hamiltonian structures. We then dis-

cuss applications to the Integrable Optics Test Accelerator

(IOTA), currently under construction at Fermilab.

INTRODUCTION

High intensity beams are essential for a variety of high en-

ergy physics applications, in particular for meeting demands

of proton drives for neutrino and neutron production. To

meet these requirements, high current proton synchrotrons

and accumulator rings are needed, for which particle loss via

beam halo is the chief intensity-limiting factor. One novel

idea for suppressing these losses is the nonlinear integrable

optics proposed by Danilov and Nagaitsev [1]. By meeting a

set of conditions, integrability can be maintained even in the

presence of large tune spreads, thereby generating regular

orbits while suppressing collective instabilities.

The Integrable Optics Test Accelerator (IOTA), currently

under construction at Fermi National Laboratory (Fermi-

lab),will provide a testbed for this and other novel concepts

in beam dynamics [2]. However, current simulation tech-

niques present challenges to understanding these dynamics

for intense beams on long time scales. Accurate modeling of

the dynamics of such beams over many turns is susceptible

to the non-symplectic nature of traditional PIC codes.

In this paper we outline a novel, symplectic, s-based algo-

rithm for tracking intense beams with self-consistent space

charge. This algorithm overcomes the traditional shortcom-

ings of finite-difference codes by neutralizing grid-heating

and other noise-driven products central to approximating

particle equations of motion. [3] We demonstrate the appli-

cation of this algorithm using a gridless spectral solver for

self-consistent dynamics akin to what was developed in [4].

We present benchmarks against traditional finite-difference

∗ This material is based upon work supported by the U.S. Department of

Energy, Office of Science, Office of High Energy Physics under Award

Number DE-SC0011340.
† ncook@radiasoft.net

Figure 1: Nonlinear dynamics in the IOTA ring are highly

susceptible to noise induced by traditional finite-difference

PIC codes. Above, the longterm deviation from integrability

scale strongly with particle number.

codes, and discuss future work for using this algorithm to

evaluate nonlinear beam dynamics.

ALGORITHM

S-based Coordinate System

The first step in generating our algorithm is to define an

s-based coordinate system for representing our system, so

that we can generate a Hamiltonian describing the system’s

evolution with the appropriate canonical coordinates. For a

s based tracking code we need to transform the independent

variable from t to s. We then make the following change

of coordinate: (x, y, s) → (x, y, z − β0ct), where ξ = z −
β0ct. In most cases, it will be convenient to define β0 to

be the beam beta, but this is not strictly required. We then

may define the canonical momentum pξ according to pξ =
pτ
β0
=

γmc

β0
, where γ is the particle Lorentz factor in the lab

frame. Note that pξ is related to pτ in a simple way, and

like pτ it is always greater than mc. We also note that the

coordinate transform to ξ is ill-defined at β0 = 0, hence

there is no concern with the appearance of infinite momenta

for a stationary beam.

Key Assumptions

Four critical assumptions have been made in deriving the

algorithm, which we outline here for convenience. First, we

make the “beam approximation,” that dξ/ds ≪ 1. Next, we

assume that there are no electrostatic elements in our system,

and so the only electrostatic scalar potential follows from the

beam space charge. Following this, we assume that dx⊥/ds ·
A⊥ ≈ 0, which holds if the beam motion is predominantly

in the s direction and radiation is neglected. This permits us

to ignore the contribution of the self-consistent transverse

vector potential components from the beam. Finally, we
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extend this condition to be As = Aext +A, where A is the

self consistent vector potential and Aext arises from external

fields. This neglects contributions due to fringe fields.

Hamiltonian and Update Sequence

We begin with the Low Lagrangian [5], devised by Low

in 1958 to provide a variational formulation for describing a

non-relativistic ionized gas in an electromagnetic field. Note

that we work in CGS units throughout the paper.

L =

∫
dx0 dx′

0


−mc2

√

1 −
1

c2

(
dx

dt

)2
f (x0, x

′
0)

+

∫
dx0 dx′

0

[
−qφ(x, t) +

q

c

dx

dt
· A(x, t)

]
f (x0, x

′
0)

+

1

8π

∫
dx

[(
−

1

c

∂A

∂t
− ∇ φ

)2

− (∇×A)2

]

. (1)

After changing variables and applying our key assump-

tions, we arrive at the reduced Lagrangian for the self-

consistent fields:

Lem =

∫
dΩ0

[
−

q

c

(
1

β0

φ − A

)]
f (Ω0)

−
1

8π

∫
dr⊥×

dξ

β0c

[(
β0

∂A

∂ξ
−
∂φ

∂ξ

)2

+ (∇⊥φ)
2 − (∇⊥A)2

]

(2)

The Hamiltonian for our system is defined according to

the usual Legendre Transform:

Hp−c = p · q′ − Lp−c (3)

This is well defined for the particle coordinates, but not

for the fields (see next section):

Hp−c =

∑

j

−

√(
β0p

(ξ)
j

)2

−
(
p
(⊥)
j

)2

− (wjmc)2+p
(ξ)
j
−
wjq

β0c
ψ

(4)

Self-forces and Spectral Solver

The Lagrangian as defined in Eqn. 2 is degenerate with

respect to the fields. As a result, one cannot define canoni-

cally conjugate coordinates as needed to perform a Legendre

Transform. Therefore, we apply the Euler-Lagrange equa-

tions to obtain an auxiliary condition on ψ:

∂µ
∂L

∂(∂µφ)
−
∂L

∂φ
= 0

∂µ
∂L

∂(∂µA)
−
∂L

∂A
= 0

Evaluating these expressions yields the following condi-

tions:

β0∂
2
ξ (β0A − φ) − ∇2

⊥A = 4π
q

c
n(®x)

−∂2
ξ (β0A − φ) − ∇2

⊥φ = 4π
1

β0

q

c
n(®x)

where n describes the particle number density in the new

coordinate system (x, y, ξ).

We then define the psuedopotential ψ according to:

ψ = β0A − φ (5)

and we may combine and reduce our two equations to yield

the single constraint:

1

γ2
∂2
ξψ + ∇

2
⊥ψ =

1

γ2
0

4πqn(®x) (6)

This equations describes the evolution of our self-

consistent psuedopotential, akin to Poisson’s equation. We

note that this equation has familiar scaling to traditional

formulations. In particular the space charge force becomes

purely transverse as γ0 → ∞ and the total force scales

with1/γ2. For the purposes of a 2D algorithm, we can ignore

variations in ξ and consider only the evolution described by

the ∇2
⊥ψ term.

We elect to describe our fields in an orthonormal Fourier

basis, according to:

ψ =
1

√
LxLy

∑

kx,ky

eikx xeikyyσkx,ky (7)

where Lx , Ly are the fundamental length scales of the system,

which provide the normalization, and σkx,ky is the matrix

of coefficients specifying the relative amplitude of each of

mode. Solving equation 6 is therefore equivalent to comput-

ing the values of σkx,ky based on the known macroparticle

distribution, weights, and shapes.

Macroparticle Discretization

To trace the particles, we introduce macroparticles by

decomposing the phase-space density in discrete shapes,

treating the particle momenta as delta functions, but permit-

ting shape functions in real space for the positions:

ψ(r, p) =

Nmacro∑

j=1

wjΛ

(
r − r(j)

)
δ
(
p − p(j)

)
. (8)

Here wj denote the macroparticle weights, δ the Dirac

delta function, andΛ the normalized particle shape functions

(so that
∫

dxΛ = 1). For this work, we consider two possible

particle shapes - delta functions and "tent functions." The

use of tent functions permits smooth sampling in Fourier

space across a range of wavevectors, corresponding to the

macroparticle width and wavevector separation.
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BENCHMARKS AND CONVERGENCE

To test our implementation, we consider the expansion

of a KV beam in a drift, and compare our results with an-

alytic predictions. The KV beam is initialized in the zero

emittance limit, with zero transverse momentum, and so

the resulting envelope expansion is purely a function of the

beam’s space charge. Figure 2 shows a comparison between

the analytic and simulated values for the particle kicks within

the distribution, using both tent- and delta-shape functions.

We note that for very small radius, the analytic potential

approaches 0 and statistical fluctuations in the calculation

limit the fidelity of the result. Figure 3 compares the beam

envelope expansion against the analytic prediction.
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Figure 2: Simulated particle kicks as compared with the

analytic result are plotted as a function of particle position

for both delta- and tent-shape functions. The tent-shape

is superior at resolving the kicks, especially at low radius

where the analytic value approaches 0.
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Figure 3: The evolution of the beam envelope is plotted as

a function of step number, showing good agreement with

the analytic prediction for a KV beam. The beam begins in

the zero emittance limit, and so the expected beam growth

is quadratic with distance.

Lastly, we evaluated the total momentum of our system.

Symplectic integrators preserve phase space structure, and

subsequently any derivations from the original values of mo-

menta should remain bounded. This is not true of traditional

finite-difference techniques, and we expect to see improved

long-term behavior in particle momenta using this algorithm.

Figure 4 depicts the total momentum for 1000 steps, which

is well conserved.
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Figure 4: The total transverse momenta of particles in the

simulation over 1000 turns is conserved to high precision.

CONCLUSION

The use of symplectic space charge solvers may provide

more insight into complex, long-term dynamics in nonlin-

ear systems by significantly reducing numerical noise. We

have developed a novel s-based algorithm for symplectic

tracking of beams with self-consistent space charge forces

in an accelerator. The algorithm makes use a spectral, grid-

less, representation of the phase space density to reduce

numerical noise and permit exact field propagation. The

algorithm permits arbitrary particle shapes, with delta- and

tent-functions demonstrated for benchmark exercises. Ex-

cellent agreement is seen between numerical results and

analytic predictions.
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