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Abstract

Solving the Vlasov-Fokker-Planck equation is a well-

tested approach to simulate dynamics of electron bunches

self-interacting with their own wake-field. Typical imple-

mentations model the dynamics of a charge density in a

damped harmonic oscillator, with a small perturbation due

to collective effects. This description imposes some limits

to the applicability: Because after a certain simulation time

coherent synchrotron motion will be damped down, effec-

tively only the incoherent motion is described. Furthermore –

even though computed – the tune spread is typically masked

by the use of a charge density instead of individual parti-

cles. As a consequence, some effects are not reproduced. In

this contribution, we present methods that allow to consider

single-particle motion, coherent synchrotron oscillations,

non-linearities of the accelerating voltage, higher orders of

the momentum compaction factor, as well as modulations of

the accelerating voltage. We also provide exemplary studies

- based on the KIT storage ring KARA (KArlsruhe Research

Accelerator) - to show the potentiality of the methods.

INTRODUCTION

When it comes to the simulation of beam dynamics in

the longitudinal phase space of electron storage rings, the

Vlasov-Fokker-Planck equation
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allows an elegant formulation of the self-interaction of the

bunch with its own wakefield. It describes the evolution

of the particle density ψ(q, p), here using the generalized

coordinates q = z/σz,0, and p = (E − E0)/σδ,0, and the

Hamiltonian H. The quantities z, E , E0, τd, σδ,0, and σz,0

describe the longitudinal position, the energy, the reference

particle’s energy, the longitudinal damping time, the energy

spread, and bunch length, respectively. The latter two ex-

ist in the equilibrium state at small bunch charges. The

perturbation due to the collective effects is described as a

perturbation to the Hamiltonian, which can be expressed in

terms of an impedance Z(ω). To follow this approach, an

ultra-relativistic (β = 1, but γ < ∞) line charge is assumed.

In general, the evolution of the phase space can be ex-

pressed using a map

M : ψ(q, p, t) → ψ(q, p, t + Δt). (2)

For numerical stability, the map M can be split into a series

of symplectic maps that are solutions to different parts of
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Eq. (1): A rotation (R) solves the unperturbed, conservative

problem and the additional potential due to collective effects

is modeled as an energy kick K . Damping and diffusion

(RHS) are added in the spirit of a particular solution, and ex-

pressed by the non-symplectic map D. They are sequentially

evaluated, so in total

M = D ◦ K ◦ R. (3)

The application of the method for studying electron beam

dynamics was first suggested by Warnock and Ellison [1]

in 2000, and has since proven to show good convergence

(e.g. [2, 3]). By splitting the rotation into an energy depen-

dent drift followed by a location dependent RF kick [4]

R = RK ◦ RD, (4)

numerical stability can be further improved. An implemen-

tation of the features discussed in this paper can be found

at [5], scripts to reproduce the results at [6]. The parameters

used for the simulations are listed in Table 1. For the wake-

field, we consider coherent synchrotron radiation shielded

by parallel plates [7].

PASSIVE PARTICLE TRACKING

As a charge density is considered, Vlasov-Fokker-Planck

solvers do not need to reproduce the trajectories of individual

particles. To still retrieve this information without the need

to track a number of macro-particles that can represent the

charge density with sufficient accuracy, we suggest passive

particle tracking. Equation 2 can be expressed as [1]

ψ(r, t + Δt) ≈ ψ(M(t |t + Δt)ψ(t)(r), t), (5)

where M(t |t + Δt)ψ(t) is a map that varies as ψ evolves in

time. This notation mirrors the fact that it was evolved from

r ′ = M(t + Δt |t)(r), (6)

Table 1: Physical Parameters Used for the Simulations

Quantity Symbol Value Unit

Accelerating Voltage VRF 799 kV

Beam energy E0 1.285 GeV

Energy spread σE 6040 keV

Bending radius R 5.559 m

Damping time τd 10.4 ms

Harmonic number h 184

Revolution frequency frev 2.716 MHz

Synchrotron frequency fs,0 8.27 kHz

Full beam pipe height g 32 mm
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Figure 1: Example charge density of a bunch in the poten-

tial well distortion. Trajectories of five particles (light blue

arrows) for a time corresponding to one unperturbed syn-

chrotron period are displayed as an overlay. Also, there are

two dark gray lines added that connect the positions at the

first and the last time step, respectively. The dynamics have

been calculated using the maps obtained based on the charge

density, neglecting stochastic effects.

which implies that a trajectory passing through r at time t

passes through r ′ at time t +Δt. Calculating the maps based

on the charge density provides good numerical stability, so

we derive them using the charge density and afterwards ex-

press them in terms of the change of a particle’s position and

energy. To get a realistic picture, special care is needed for

D: This map contains averaged quantum effects, which do

not make sense on a single particle level. A first order prob-

abilistic approach including both, damping and radiation

excitation, is [8]

D : p(t + Δt) = p(t) ×

(
1 −

2Δt

τd

)
+ 2

√
Δt

τd

N
(
σp

)
, (7)

whereN(σ) is a random number drawn from a zero-centered

Gaussian distribution with the width σ. However, as the

tracking is only performed for visualization purposes, it is

also valid to think of an “average particle”. An example

using this flavour of the passive tracking method is shown in

Fig. 1. It diplays the trajectories of five particles as an overlay

to the charge density of an electron bunch in a distorted

potential well. Using this method, tune spread and tune shift

due to collective effects are clearly visible.

DYNAMIC ACCELERATING VOLTAGE

Typically, the unperturbed LHS of Eq. (1) is evaluated

to the first order, yielding a harmonic oscillator which is

then modeled using the rotation map R. A time-dependent

acceleration could in principle be modeled by adding a driv-

ing term to the RHS. We, instead, use the fact that we split

R into two contributions [see Eq. (4)] parallel to the two

dimensions that span the phase space. This way, only the

RF kick map RK has to be modified. For small variations,
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Figure 2: Evolution of the synchrotron oscillation amplitude

over time. First, the simulated RF is stable. At T = 0, white

Gaussian phase noise with σq = 0.1◦ = 0.56 ps is turned

on. The natural rms bunch length is σz,0 = 4.61 ps.

the phase modulation results in an additive term δ+, the am-

plitude modulation in a multiplicative term δ× [9]. So the

map can be expressed as

RK : p(q, t + Δt) = p(t) + δ+(t) + q × tan−1(1/(Δt fs,0))

× [1 + δ×(t)], (8)

with the synchrotron frequency fs,0. For the unperturbed

case (δ = 0), the map is constant in t. So, the formulation is

equivalent to a simple rotation for this unperturbed case.

As a first test, we consider Gaussian white noise to the

RF phase. To do so, it has to be considered that the length

of the time step Δt for the numerical solution of Eq. (1) can

be arbitrarily chosen. So, the random distribution is sam-

pled more often for small Δt. This can be compensated by

introducing a correction factor [10] that scales the dynamics

to be equal to the case where acceleration happens once per

revolution period. In total

δ+ =
√
Δt frev × N

(
σq

)
, (9)

where σq is the RF phase spread σφ expressed in multiples

of the natural bunch length. An example of simulation us-

ing σφ = 0.1◦ is displayed in Fig. 2. The RF phase noise

drives a coherent synchrotron oscillation with stochastically

varying amplitude. Its long-term mean amplitude is strongly

dependent on the amplitude of the phase noise and can be

calculated by [9]

〈φ2〉 = π2 f 2
s,0 σ

2
φ τd/ frev. (10)

In a second step, we add RF amplitude noise with

δ× =
√
Δt frev × N (σV/VRF) , (11)

where σV is the spread of the peak accelerating voltage.

Bursting spectrograms of exemplary results are displayed

in Fig. 3. In general, the simple model only consider-

ing the CSR impedance shielded by parallel plates repro-

duces the main features: There are strong frequency lines

at f ≈ 30 kHz and its multiples as well as the occurrence of

low frequency fluctuations at higher currents. The threshold

currents, however, differ by ≈ 25 μA. Introducing noise

does not change this. Instead, it influences the background
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Figure 3: Spectrograms of emitted bursting coherent synchrotron radiation (see e.g. [11]). Left: Simulation data without

RF noise. Center: Simulation considering RF phase noise with σq = 0.01◦ and RF amplitude noise of σV/V = 1 %. Right:

Measurement data obtained using a broad-band Schottky diode from ACST [12]. Both simulations reproduce the main

frequency at f ≈ 30 kHz and its harmonics. The instability threshold is 211 μA for the measurement and 237 μA for both

simulations. Adding noise improves the agreement between simulation and measurement in another aspect: The unphysical

drop of the background at the lowest current disappears and the minimum intensity between the peak frequencies is lowered,

where an additional structure becomes visible. (See text for interpretation of current-independent fs,0 harmonics.)

level in two ways: Without noise, the CSR ceases fluctu-

ating below the threshold current. Considering noise re-

moves this artifact. Furthermore, it actually lowers the noise

floor between the two main frequency components. In the

given example, this allows to see an additional structure at

f ≈ 50 kHz, which seems comparable to similar features

in the measurement data. The simulated lines at the 2nd

and 4th fs,0 harmonic are due to asymmetries driven by the

RF noise. In the projection to the profile, they appear with

multiples fs,0. The fs,0 line in the measurement might be

explained by the different transmission from the emitted

light to the detector for different dispersive paths. In con-

trast, only emission is considered for the simulation. The

difference in the instability threshold not being explained by

noise suggests to take additional impedances into account.

In principle, Eq. (8) also holds for intentional RF modu-

lations. However, they are typically driven with an ampli-

tude [13–16] where the applicability of the linear approxima-

tion might be questioned. So, for these cases, the sinusoidal

shape of the accelerating voltage should be considered. It

can be expressed as

RK : p(t + Δt) = p(t)

− frevΔt e [VRF sin(ωV q(t) + q0) + V0]/σδ,0, (12)

where q0 is the synchronous phase, ωV is the RF frequency

in units of q, and eV0 is radiation loss of an electron per turn.

When (ωV q(t) + q0) ≈ 0, this formulation is equivalent to

the linear approximation.

NONLINEAR MOMENTUM

COMPACTION

To complete the picture, we also include higher orders of

the momentum compaction factor

αc =

∞∑
n=0

αn

(
E

E0

)n
=

ΔL/L0

ΔE/E0

, (13)

where L0 marks the length of the design orbit and ΔL the

difference in orbit length due to an energy offset ΔE . This

nonlinearity introduces a tune-spread that can e.g. Landau

damp instabilities [2]. The modified drift map RD now reads

RD : q(t + Δt) = q(t) + η′c × p(t), (14)

where η′c = α
′
c−1/γ2 is the slip factor in the q, p coordinates.

If αn = 0 ∀n > 0, the map is identical to the one originally

developed for the rotation.

SUMMARY AND OUTLOOK

We presented additions to Vlasov-Fokker-Planck solvers

that allow to solve problems that were previously not ad-

dressed by this simulation method. As a premiere example,

we considered RF noise. In the simulation of bursting CSR,

the addition allows to see frequency components that where

not reproduced before. Systematic studies modeling inten-

tional RF phase modulation and using nonlinear momentum

compaction are planned and first tests already show promis-

ing results.
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