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Abstract

Sextupole magnets provide position-dependent momen-

tum kicks and are tuned to provide the correct kicks to parti-

cles within a small acceptance region in phase space. Sex-

tupoles are useful and even necessary in circular accelerators

for chromaticity corrections. They are routinely used in most

rings, i.e. CESR. Although sextupole magnets are necessary

for particle energy corrections, they also have undesirable

effects on dynamic aperture, especially because of their non-

linear coupling term in the momentum kick. Studies of inte-

grable systems suggest that there is an analytic way to create

transport lattices with specific transfer matrices that limit the

momentum kick to one dimension. A one-dimension sex-

tupole is needed for chromaticity corrections: a horizontal

sextupole for horizontal bending magnets. We know how to

make a “composite” horizontal sextupole using regular 2D

sextupoles and linear transfer matrices in an ideal thin-lens

approximation. Thus, one could create an accelerator lattice

using linear elements, in series with sextupole magnets to

create a “1D sextupole”. This paper describes progress to-

wards realizing a realistic focusing lattice resulting in a 1D

sextupole.

INTRODUCTION

Modern particle accelerators have become invaluable

tools for research in many fields, including biology, chem-

istry, and material science. The field of accelerator physics

therefore, is always working towards expanding the capa-

bilities of light source accelerators. There are many differ-

ent ways to create better light sources, and studying and

improving the transport of the beam of electrons through

the accelerator is one such method. In particular, research

into nonlinear beam dynamics, and finding ways of creating

effectively linear which function as non-linear accelerator

elements such as sextupole and octopole magnets. The elec-

tron beam which circulates within a synchrotron consists

of many particles, each of which ideally have almost the

same energy. However, as the particles in the beam circulate,

they radiate away momentum and can become “off-energy."

To maintain the quality of the beam for continued radiation

production, sextupole magnets are used to correct off-energy

particles. Sextupole magnets provide position-dependent

momentum kicks and are tuned to provide the correct kicks

to particles within a small acceptance region in phase space.

Thus, particles outside of this regions could be kicked farther

off-energy and eventually result in beam loss by physically

hitting the beam pipe. This beam loss is detrimental to beam
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lifetime and brightness [1-2]. Although sextupole magnets

are necessary for particle energy corrections, the nonlinear-

ities they introduce can cause nonlinear beam instabilities.

The region in phase space in which the beam is stable, called

the dynamic aperture, and is often limited by the effects

of sextupole magnets, but can be extended in many ways.

Studies of integrable systems for particle accelerators [2-3]

by Sergei Nagaitsev suggest that there is an analytic way

to create transfer matrices which limit the momentum kick

to one dimension. Thus, one could create an accelerator

lattice using linear elements (dipoles and quadrupoles), in

series with sextupole magnets to create a “one-dimensional

sextupole.” This method, which is a semi-analytic method

of determining how sextupole magnets can be placed to limit

nonlinearities in an accelerator, is discussed here.

THEORY

The one-dimensional sextupole was developed by consid-

ering a simple transfer matrix, which can be created using

linear elements such as drift spaces and quadrupole mag-

nets, and has the following properties. The matrix must be

diagonal, and invertible, with diagonal elements as shown

in Eq. 1.

D =



a
1
a

b
1
b



(1)

where both a and b are any real scalar numbers. For a transfer

matrix of the form of Eq. 1 and the inverse the matrix of D,

when applied to two consecutive sextupole magnets results

in an entirely one-dimensional momentum kick:

DS1D−1S2 =



x

px + ∆px
y

py



. (2)

where S1 and S2 are non-linear transfer matrices, and are

represented by:

Si =



x

px + qi(x2 − y
2)

y

py − 2qi xy



, (3)

for a current qi , which is proportional to the field gradient

in the sextupole.
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By calculating the transformation DS1D−1S2

DS1D−1S2 =



ax

px +
q1(x2−y2)

a
+ q2[(ax)2 − (by)2]

by
py−2q1xy

b
− 2q2abxy



(4)

the condition under which the sextupole kick will be decou-

pled can be identified and solve. The transformation in Eq.

2 is a composition of transformations, and is not completed

by simple matrix multiplication due to the non-linear nature

of sextupole transformation. In order to do this calculation,

the sextupole kicks are added to the initial state vector, then

the matrix multiplication of D on the state is carried out.

The second sextupole kick is then added to the resulting

state vector, and then the final matrix multiplication D−1 is

carried out. Lastly, the condition that must be satisfied in

order for the coupling term in the y-direction to vanish is:

2(q1 + ab2q2)xy = 0, (5)

q2 =
−q1

ab2
. (6)

By setting q2 as shown in Eq.6, the transformation yields:

DS1D−1S2 =



x

px + q1x2 −
a2q1x

2

b2

y

py



. (7)

Therefore, one can see from the final state vector, Eq. 7,

the change in the momentum in the x-direction, due to the

1-d sextupole transfer matrices is:

∆px = q1

(

1 −
(

a

b

)2
)

x2. (8)

From these calculations, we have shown that if the transfer

matrices in Eq. 2 could created by an accelerator lattice,

then the momentum kick in the transverse direction would

be given by Eq. 8 where the currents q1 and q2 are related

by Eq. 6. This would eliminate the x-y coupling in the

y-direction, though in practice we hope this would simply

render the coupling negligible.

THIN LENS LATTICE SOLUTION

Generally, any lattice that satisfies the conditions shown

above could produce a 1-D sextupole, but a short segment

with minimal quadrupoles is preferable, as it could be eas-

ily inserted into an existing machine. The following lattice,

which uses the thin lens approximation for quadrupole mag-

nets with focusing gradient ki , and drift lengths Li . To cal-

culate a general solution for a 1-D sextupole, a simple trans-

formation of four quadrupoles (Q) and three drift lengths

(O) therefore:

Dlat = Q(k1)O(L1)Q(k2)O(L2)Q(k3)O(L3)Q(k4), (9)

can be calculated, and by setting Dlat equal to Eq. 1,

where the transfer matrices are define as:

Q(ki) =

*....
,

1 0 0 0

ki 1 0 0

0 0 1 0

0 0 −ki 1

+////
-

(10)

O(Li) =

*....
,

1 Li 0 0

0 1 0 0

0 0 1 Li

0 0 0 1

+////
-

, (11)

a solution for the parameters in the system can be determined

in terms of a and b such that the transformation Dlat satis-

fies Eq. 1. By fixing a length scale, L1, each of the other

parameters, L2, L3, and each ki are function only of L1, a,

and b. Values for a and b can be set according to any neces-

sary conditions, thus determining the necessary drift length

and quadrupole focusing gradients. In doing this, now a thin

lens approximation lattice can be determined, and optimized

further to create a realistic lattice which would preserve the

1-D sextupole properties.

ENERGY SPREAD CONSIDERATIONS

In order to gauge if a 1-D sextupole is a practical option,

it is prudent to determine how the system will change when

we consider realistic beam parameters. Figure 1 demon-

strates how the phase space coordinates for the centroid of

a bunch would be transformed in a 1-D sextupole, and the

effect of beam energy spread which results in a non-zero

coupling between the horizontal and vertical motion. Thus it

is important to understand the effect of beam energy spread

and how it can be mitigated. The calculations shown earlier

consider only on-axis (∆x/x = 0) and on-energy (∆p/p = 0)

particles. In order to determine the magnitude of the effects

energy spread has in a 1-D sextupole, we recalculated the

theoretical values by introducing a detuning parameter, δ.

This analysis and evaluation of a numerical examples using

realistic beam and lattice parameters is presented here.

The transfer matrices representing a quadrupole are now:

Qδ(ki) =

*....
,

1 0 0 0

ki(1 − δ) 1 0 0

0 0 1 0

0 0 −ki(1 − δ) 1

+////
-

(12)

From this, we can calculate a Dδ , which accounts for the

effect of energy spread. In order to find parameters which

minimize the effects from energy spread in a 1-D sextupole,

a residual matrix ∆T = Dlat − Dδ was calculated. Because

the specific values of a and b in the diagonal transformation

are not as important as maintaining the conditions for the

diagonal transformation, they can be varied as needed. In

order to minimize the contribution from beam energy spread,

the parameters a and b were varied such that the elements

in ∆T were minimized.
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Table 1: Shown are the thin lens solution parameters which minimize the change in the diagonal 1D sextupole transformation

matrix, for δ = 10−3.

a b L1 L2 L3 k1 k2 k3 k4 ∆py/∆px(%)

-2.9 -0.2 1.00m 0.78m 0.78m 0.90m−1 -1.94m−1 2.18m−1 -1.17m−1 0.68%

-3.5 -0.3 0.75m 0.66m 0.76m 1.21m−1 -2.40m−1 2.39m−1 -1.19m−1 0.86%

-4.8 -0.4 0.50m 0.57m 0.72m 1.77m−1 -3.24m−1 2.72m−1 -1.23m−1 0.87%

-7.5 -0.4 0.25m 0.44m 0.55m 3.24m−1 -5.61m−1 3.67m−1 -1.53m−1 0.49%

By optimizing the system for various initial a and b set-

tings, and for L1 = 1m, 0.75m, 0.5m, 0.25m and energy de-

tuning δ = 10−3, which are reasonable drift lengths for a

short portion of a long linear or circular machine, the fol-

lowing settings were determined to minimize the energy

spread contribution to the diagonal transformation matrix.

The merit of these solutions is demonstrated by the percent

increase of ∆py from 0, when the parameters are applied

to the theory which considers beam energy spread. The

percent change was calculated by considering the solutions

shown in Table 1, for the following initial phase space pa-

rameters: x0 = 0.5mm, y0 = 0.05mm, px = 0, py = 0, and

the sextupole currents scaled such that q1 = 1, q2 = −1
ab2 .

k1 
L1 

k2 k3 k4 
L2 L3 

k4 k3 k2 k1 
L3 L2 L1 

S1 
S2 

x,y 

s 

x=1 

px=0 

y=1 

py=0 
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px=Δpx 

y=1 

py≠0 

 

 

Δpx 
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y 

Initial 

State 

Final 

State 

D D-1 

x, due to energy spread 

y, due to energy spread 

Figure 1: A simple example of how a 1-D sextupole trans-

forms the phase space coordinates for the centroid of a

bunch, with and without beam energy spread. A particle

with x0 = y0, px = py = 0 entering the 1-D sextupole would

exit with x0 = y0, px = ∆px, py = 0, but particles that are

off-energy would end up with x0 = y0, px = ∆px, py 6= 0.

The parameters listed in Table 1 show that the drift lengths

are reasonable, though the focusing gradients may not be.

The ideal solution would be the one in which ∆py/∆px is

minimal, such as the solution for a = −7.5, b = −0.4. How-

ever, the focusing gradients in the quadrupoles for this so-

lution are very high and may not be realizable in a normal-

conducting machine. Still, this solution is further ideal due

the short drift lengths needed to construct it. A short 1-D sex-

tupole would be desirable because it could be easily inserted

into an existing machine. However, further optimization

could yield other similar solutions with physically realizable

quadrupole strengths, that still minimize the momentum cou-

pling due to beam energy spread. The solutions presented

therefore display the broad solution space available for 1-D

sextupoles parameters.

CONCLUSIONS AND FUTURE WORK

In this paper, we consider the theory for simple 1-D sex-

tupole model, using the thin lens approximation to describe

the action of quadrupole magnets on a particle, and the same

theory when considering beam energy spread. An optimiza-

tion of lattice parameters is also presented, in which the

1-D sextupole parameters are optimized to minimize the

effects of beam energy spread. Further studies will focus

on understanding the stability of 1-D sextupole solutions.

These solutions will also need to be generalized, such that a

realistic thick quadrupole lattice solution can be designed.

The testing of such a lattice segment could take place by

constructing the segment at a facility in which the machine

can be altered with minimal issue. A facility such as the

Integrable Optics Test Accelerator (IOTA) would be an ideal

facility, and would further the mission of the project; pur-

suing methods of making non-linear accelerator elements

integrable.
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