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Abstract
Employing Synergia simulations with the DMD method

we investigate the Landau damping of space charge modes
in bunched beams. The simulations reveal two instances
of the parametric damping mechanism in bunched beams.
The first example occurs in the proximity of coupling reso-
nance and is due to the oscillation of particles’ amplitudes in
the transverse plane. This oscillation modulates the mode-
particle coupling with particle dependent trapping frequency.
The second example is due to the modulation of the mode-
particle coupling in one transverse plane by the oscillatory
motion in the other plane.

INTRODUCTION
Landau damping (LD) gives rise to the stabilization of

collective modes in plasma and accelerator beams. The
damping is caused by the energy transfer from the collec-
tive mode to the particles in resonance with the mode. The
damping rate is, therefore, determined by the number of the
particles capable of resonating with the mode. Convention-
ally, LD requires the coherent resonance frequency to lie
within the incoherent spectrum, i.e., to be located within the
continuous frequency spectrum of the individual particles.

In a recent paper [1] we introduced the parametric LD
which occurs when the mode-particle coupling has an ex-
tended frequency spectrum. In this case the damping is de-
termined by the interplay of both particles and mode-particle
coupling spectra. The existence of parametric LD was
demonstrated by simulation of transverse coherent modes
of bunched accelerator beams with space charge (SC) at the
coupling resonance (CR). The parametric damping at CR is
caused by the oscillation of particles’ amplitudes in the trans-
verse plane. This oscillation modulates the mode-particle
coupling with particle dependent trapping frequency. Here
we present another instance of parametric damping mech-
anism which occurs away of CR due to the modulation of
the mode-particle coupling in one transverse plane by the
oscillatory motion in the other plane.

We employ the Synergia accelerator modeling package [2,
3] to simulate the propagation of a single Gaussian beam
through a linear lattice. The modes are extracted from the
transverse displacement density using the dynamic mode
decomposition (DMD) technique [4, 5]. DMD is a data-
driven algorithm used for modal analysis in both linear and
nonlinear systems.

After introducing the concept of parametric LD mecha-
nism we proceed by investigating the Landau damping in a
simplified 2-dimensional (2D) model for accelerator beams.
∗ macridin@fnal.gov

While this model is useful for understanding the damping
mechanism and interpreting the simulations, the numerical
results presented in this paper are based only on the track-
ing simulations of a Gaussian beam through an OFORODO
lattice.

PARAMETRIC LANDAU DAMPING
The LD mechanism results from the interaction of the

collective mode with the individual particles. Using the
simple harmonic oscillation approximation [6], the equation
of motion for the particle i interacting with the mode x̄ can
be written as

Üxi + ω2
i xi = −Ki x̄(t), (1)

where xi represents the particle displacement, ωi the parti-
cle frequency, Ki the mode-particle coupling and x̄(t) the
collective mode.

In systems with conventional LD, K is either time inde-
pendent or its oscillation frequency is particle independent.
The resonance condition is ωi = ωc , where ωc is the x̄(t)
frequency, i.e., x̄(t) ∝ exp(−iωct). The damping rate is pro-
portional to the spectral density at the resonant frequency,

λ ∝ ρ(ωc) =
∑
i

δ(ωi − ωc). (2)

Nevertheless, it may happen that the mode-particle cou-
pling is characterized by a frequency spectrum, i.e., Ki(t) ∝
exp(−iµit) and µi is particle dependent. The resonance con-
dition in this case is ωi = ωc ± µi . The damping rate is
proportional to the number of particles which fulfill the res-
onance condition,

λ ∝ h(ωc) =
∑
i

δ(ωc − ωi ± µi). (3)

In this case the damping is determined by the interplay of
both particles and mode-particle coupling spectra.

MODE-PARTICLE COUPLING FOR
SPACE CHARGE MODES

Let’s consider a 2D model and assume a transverse mode
x̄(t) and a SC potential V(x − x̄, y). The equation of motion
of a particle in the horizontal plane reads

Üx + ω2
0x x = −

∂V
∂x
(x, y) +

∂2V
∂x2 (x, y)x̄. (4)

One way to determine the particle’s tune shift [7] and the
mode-particle coupling is to write

x =
√

2Jx/ω0x sinΦx, y =
√

2Jy/ω0y sinΦy, (5)
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in equation (4) and assume ωx ≈ ÛΦx and ωy ≈ ÛΦy and
slowly varying Jx and Jy . Only the terms oscillating with a
frequency close to ωx are retained in the first order pertur-
bation, since the effect of higher order harmonics averages
to zero.

Following this procedure, depending on the bare tunes
ω0x and ω0y , in most cases one gets the following equation
of motion

Üx +
(
ω0x − δωx(Jx, Jy)

)2 x = −K(Jx, Jy)x̄. (6)

The situation described by Eq.(6) was presented in detail
in Ref [1]. The behavior of K(Jx, Jy) might yield conven-
tional or/and parametric Landau damping. The conventional
damping happens off-resonance, when the particle’s action
coordinates Jx and Jy are in a good approximation constant
of motion. The frequency of the mode-particle coupling
K(Jx, Jy) is particle independent and the resonant energy
exchange occurs when the particles frequency matches x̄(t)
frequency, i.e., ωx ≈ ωc . The parametric damping happens
in the vicinity of CR, i.e., when ω0x = ω0y . For particles
trapped at CR, Jx and Jy are oscillating with a trapping fre-
quency ωt which is particle dependent. The oscillation of
the particle action coordinates modulates K(Jx, Jy) with ωt

frequency. The resonant energy exchange occurs when the
the particle’s frequency plus its trapping frequency matches
the x̄(t) frequency i.e., ωx + ωt ≈ ωc .

The numerical simulations presented in the next section
show a different example of parametric LD, occurring away
from CR. The conditions for the resonant energy exchange
mechanism in this case can be understood by considering
the following term in the expansion of the SC potential,

V(x, y) = αx2y2. (7)

According to Eq.(4) the equation of motion is

Üx + ω2
x x = 2αy2 x̄ (8)

The mode-particle coupling K is modulated by the vertical
motion via y2. Since y2 = 2Jy(1−cos 2Φy)/2ω0y modulates
K with 2ωy frequency, the condition for resonant energy
exchange is, ±ωx = ±ωc ± 2ωy . In our simulation we find
resonant particles satisfying

2ωy ≈ ωx + ωc . (9)

Of course, for a particular region in the parameter space
defining the accelerator beam more than one resonant en-
ergy exchange conditions can be fulfilled. One damping
mechanism does not excludes others.

SIMULATION AND RESULTS
The simulations are done by employing the particle track-

ing code Synergia [2]. A lattice made by 10 identical
OFORODO cells is chosen as in Refs. [1,8]. At every turn the
transverse displacement density is calculated. The modes’
properties are extracted using the DMD [4, 5] technique.

Application of Synergia and DMD to beam dynamics is
described in [8]. The beam distribution is longitudinally
and transversely Gaussian with equal vertical and horizontal
emittances. The chromaticity is zero. The SC parameter is
defined as q = δQsc max/Qs where δQsc max is the SC tune
shift at the center of the bunch and Qs is the synchrotron
tune.

Figure 1: Landau damping λ/ωs of the horizontal first SC
mode versus ∆Q0/Qs =

(
Q0x −Q0y

)
/Qs for different val-

ues of the SC parameter q and the synchrotron tune Qs

where ωs = ω0Qs is the synchrotron frequency. The en-
hanced damping region is asymmetric with respect the to
∆Q0 = 0, extending predominantly on the negative side of
∆Q0. Two maxima of the damping rate can be noticed.

In Fig. 1 we plot the damping of the horizontal first
SC mode versus ∆Q0/Qs = (Q0x − Q0y)/Qs. Around
Q0x = Q0y one can see a region with about ≈ 1.5 ∼ 2
times larger damping. The enhanced damping region is
asymmetric with respect the to ∆Q0 = 0, extending predom-
inantly (≈ 80%) on the negative side of ∆Q0. We notice
two maxima of the damping rate in the enhanced damping
region. One is at ∆Q0 = 0 and the other at negative ∆Q0.
Both maxima are caused by parametric damping, but the
mechanism corresponding to these two cases is different, as
discussed below.

Calculation of the coherent tune ν of the SC modes was
presented in Ref. [8]. Due to their synchrotron motion,
the particles see the first SC mode at the ω0(ν ± Qs) fre-
quency [1]. The proportionality factor ω0 between the tune
and frequency is the revolution frequency of the synchronous
particle.

To understand damping mechanism we investigate the
tune properties of the LD responsible particles, i.e., the
particles involved in the resonant energy exchange with the
mode. These particles are the ones with the largest change
in their energy between the end and the beginning of the
simulation [1].

In Fig. 2 (a) we plot the bunch footprint when Q0x � Q0y .
The tunes of the LD responsible particles is located at the
coherent tune, ν − Qs, as can be seen in Fig. 2 (b). The
damping mechanism is conventional.
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Figure 2: (a) Bunch tune footprint at off-resonance, Q0x −
Q0y = 11Qs . (b) Tune footprint of the LD resonant particles.
The tunes are in the proximity of the coherent tune Qx =

ν −Qs . The damping mechanism is conventional.

Figure 3: (a) Bunch tune footprint at CR, Q0x = Q0y . (b)
Tune footprint for the LD responsible particles. Large part of
the spectral weight is along the resonance line 2Qx − 2Qy =

0, with the horizontal tune well below ν −Qs .

The bunch tune density at CR is plotted in Fig. 3 (a).
Enhanced spectral weight is observed along the CR line
2Qx − 2Qy = 0, consequence of resonance trapping. As
illustrated in Fig. 3 (b) the tune of most LD-responsible par-
ticles is not at ν −Qs but extends well below Qx = ν −Qs

on the CR line. In fact we find that the tune of the LD-
responsible particles satisfies Qx + Qt ≈ ν − Qs, where
ω0Qt is the trapping frequency. The trapping frequency
of each particle is extracted from the Fourier spectrum of
Jd(t) = Jx(t) − Jy(t), as described in Ref. [1]. Therefore the
parametric damping mechanism is caused by the modulation
of the mode-particle coupling with the oscillation of Jx and
Jy .

Figure 4: (a) Bunch tune footprint when Q0x−Q0y = 1.75Qs .
(b) Tune footprint for the LD responsible particles. Beside
the spectral weight at ν −Qs characteristic to conventional
damping, a significant spectral weight is seen on the line
2Qy = Qx + (ν +Qs).

A different example of parametric damping is shown in
Fig. 4. The bare betatron tunes satisfy Q0x −Q0y = 1.75Qs ,
which corresponds approximately to the peak at ∆Q0 < 0 in
the enhanced LD region shown in Fig. 1. The tune of most

LD responsible particles is in the vicinity of ν −Qs pointing
to conventional damping. However, the tune of a significant
fraction of LD responsible particles satisfies 2Qy = Qx +

(ν + Qs), as can be seen from Fig. 4 (b). This condition is
in agreement with Eq.(9) derived for the simplified model.
The parametric damping mechanism is a consequence of
mode-particle coupling being modulated by the motion in
the vertical plane, K ∝ y2 x̄.

CONCLUSIONS
Employing Synergia simulations with the DMD method

we calculate the Landau damping of the first SC mode in
bunched beams. In the parameter space defined by the bare
betatron tunes, we find a region with enhanced damping in
the vicinity of CR. This region is asymmetric with respect to
Q0x −Q0y , with one maximum at CR and the other at Q0x <
Q0y . By investigating the tune of the particles responsible for
LD we find two different illustrations of parametric damping
mechanism. The first case occurs at CR and is due to the
oscillation of particles’ amplitudes in the transverse plane.
This oscillation modulates the mode-particle coupling with
particle dependent trapping frequency. The second case
is due to the modulation of the mode-particle coupling in
one transverse plane by the oscillatory motion in the other
plane. This second example explains the asymmetry of the
enhanced damping region.
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