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Abstract
An integrable Rapid-Cycling Synchrotron (iRCS) has

been proposed as a replacement for the Fermilab Booster to

achieve multi-MW beam power for the Fermilab high-energy

neutrino program. The successful application of nonlinear

integrable optics to proton synchrotrons requires careful ex-

amination of single-particle longitudinal effects, especially

synchrotron motion. For example, synchrobetatron coupling

may excite transverse resonances in the ring. We will use

the Synergia code to simulate the effects of this synchrobe-

tatron coupling on the iRCS design with nonlinear inserts.

Assuming the synchrotron tune is sufficiently small, we have

identified one or more adiabatic invariants of the motion.

These invariants suggest that integrable optics with synchro-

betatron coupling retains integrability when averaged over a

synchrotron period.

ADIABATIC RF AND INTEGRABLE
DYNAMICS

Nonlinear integrable optics has been thoroughly studied

for on-momentum, single-particle dynamics [1]. There has

been some work on off-momentum dynamics [2] – chro-

maticity and dispersion – but for many applications we

must consider synchrotron oscillations. Because the syn-

chrotron tune is small for trajectories far from the separatrix,

νs(J) << 1 for synchrotron action variable J, we can treat
the synchrotron oscillations as a slow-oscillating perturba-

tion to the integrable optics Hamiltonian. In terms of a single

turn map [3] with RF, we can write this as

Mring =M0Mr f (1)

where the initial particle coordinates zin. are given by z f in. =
Mring ◦ zin. after a single turn in the ring. HereM0 is the

single-turn map for the transverse dynamics, including chro-

matic effects, andMr f is the map for the pure synchrotron

motion.

In general, we write the maps in terms of Lie operators [4]

M0 = exp {− :H(�p⊥, �q⊥; δ(J, θ):} (2a)

Mr f = exp {− :εV(J):} (2b)

with δ the energy offset. The synchrotron tune is given by

ενs(J) = ε
∂V
∂J

(3)
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andH would be integrable if δ were kept constant – i.e. if
there were no synchrotron oscillations. In principle, the lon-

gitudinal dynamics changing δ should break the transverse
invariants. However, if the synchrotron tune is sufficiently

small, we will be able to recover a Hamiltonian that is inte-

grable over many turns.

N-TURN HAMILTONIAN
The map for taking N turns is

(Mring

)N
=

(M0Mr f

)N
(4)

which we can exactly rewrite as1

(Mring

)N
=

��
�
N−1∏
j=0

M(j)
0

�	



(Mr f

)N
(5a)

M(j)
0
=

(Mr f

) j M0

(Mr f

)−j
(5b)

From the similarity transformation property of symplectic

maps [5], we can rewrite the Hamiltonian forM(m)
0

as

M(m)
0
= exp {− :H(�p⊥, �q⊥; δ(J, θ + mενs(J)):} (6)

Using the Baker-Campbell-Hausdorff series, we can com-

pute to leading order the product as an exponential operator

��
�
N−1∏
j=0

M(j)
0

�	


≈ exp

{
− :

N−1∑
m=0

H(�p⊥, �q⊥; δ(J, θ + mενs(J)):
}

(7)

where we have dropped the higher order terms. So long as

ενs(J) � 2πwe can approximate this sum as an integral over

θ, so our N-turn Hamiltonian for the transverse dynamics is

H(N ) ≈ 1

ενs(J)
∫ Nενs (J)

0

dθH(�p⊥, �q⊥; δ(J, θ)). (8)

Because the integrable system is periodic in θ, we can rewrite
H as a Fourier series

H(�p⊥, �q⊥; δ(J, θ)) =
∑
k

H(k)( �p⊥, �q⊥; J)eikθ (9)

which, after integrating over one or more synchrotron peri-

ods, leaves the N-turn Hamiltonian as

H(N ) ≈ N × H(0)( �p⊥, �q⊥; J) + oscillating terms. (10)

1 The details of this calculation are beyond the scope of this paper, but will

be in a paper submitted to the IPAC ’18 Special Edition of PRAB.
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The N-turn map can then be given, approximately, as

(Mring

)N ≈ exp
{
−N :H(0)( �p⊥, �q⊥; J) + εV(J):

}
. (11)

If H(0) is integrable, then there is a canonical transformation
that allows us to transform to

H(0)( �p⊥, �q⊥; J) �→ H̃(0)( �I⊥; J) (12)

for the transverse action variables �I⊥.
This applies to the integrable optics Hamiltonian de-

scribed in [2], where the single-turn Hamiltonian with off-

momentum terms was calculated to be

H =μ0
{
(1 − Cx(δ))

p2x + x2

2
+

(
1 − Cy(δ)

) p2y + y2

2
+ tUDN (x, y)

} (13)

for the fractional phase advance μ0 across the integrable
optics insert drift, tUDN the potential derived by Danilov

and Nagaitsev, and C(δ) the chromaticity. The dressed chro-
maticity C(J) =

∫
dθC(δ(J, θ)) lets us rewrite the N-turn

Hamiltonian as

H(0) =μ0

{(
1 − Cx(J)

) p2x + x2

2
+

(
1 − Cy(J)

) p2y + y2

2
+ tUDN (x, y)

} (14)

which, if the chromaticities are equal, we can rewrite as2

H(0) = μ0
(
1 − C(J)

) {
p2x + x2

2
+

p2y + y2

2
+

t
(
1 − Cx(J)

)−1
UDN (x, y)

} (15)

which is integrable with a renormalized t value and with
adjusted phase advances.

From this result, we can expect the Danilov-Nagaitsev

invariants to be conserved every N turns, with oscillations

with the synchrotron motion around a nominal value.

NUMERICAL EVIDENCE – IRCS
TRACKING DATA

Preliminary studies of an iRCS design [6] support this con-

clusion. The relevant parameters for the iRCS are given in

able 1. In this case, the vertical and horizontal chromaticity

are close but not equal (Fig. 1), giving a small perturbation

to the integrable system.

As we can see in Fig. 1, the chromaticities for positive

δ are very close, with differences in the tune well under
0.001, while for negative δ the chromaticity difference is

2 If the chromaticities are not equal, there remains a perturbation to the

Danilov-Nagaitsev Hamiltonian involving the linear transverse dynamics

of the lattice proportional toCx (J) −Cy (J).

Table 1: Relevant Parameters of iRCS Lattice

Parameter Value

Periodicity 12

Betatron Tune 21.6

Synchrotron Tune 0.08

Phase-advance over insert 0.3 × 2π
Nonlinear Strength t-value 0.3

Elliptic Distance c-value 0.14 m1/2

Figure 1: iRCS vertical and horizontal chromaticities.

much larger. We expect to see this as an asymmetry in the

fast oscillations in the invariant – during the phase of the

synchrotron period where δ > 0 we will see larger variation
in the invariants than in the phase where δ < 0.

We see this correlation between the energy deviation and

the level of deviation from the invariant in Fig. 2. As the en-

ergy deviation goes negative, the envelope of the oscillations

of the two invariants grows, suggesting a stronger perturbing

term at negative energy deviation. The synchrotron period is

Figure 2: Envelope oscillations of H and
√

I with the en-
ergy offset, but the system is periodic with the synchrotron

motion.

very close to twelve turns. If we only look every synchrotron

T
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period, we see that H and
√

I 3 are very well conserved, and

are much better-conserved near when the chromaticities are

equal. The region with equal chromaticities is the region

where the single-turn Hamiltonian is closest to the mod-

ified Danilov-Nagaitsev Hamiltonian in [2]. This pattern

persists over many synchrotron oscillations in simulations,

thereby suggesting the adiabatic invariant described by the

map approach above.

We can also visualize how H and I vary with δp/p in the
3D plot in Fig. 3. This plot includes data over approximately

twenty synchrotron oscillations. The H and
√

I values fill in
a trapezoidal area at each fixed slice of δp/p, indicating that
the motion is bounded and that there are two nearby invari-

ants even when the chromatic perturbations are stronger.

Figure 3: Scatter plot of H and
√

I versus δp/p. The color
map is coordinated with the momentum offset, so that yellow

is very positive and purple is very negative.

These plots are all for a single trajectory, but the same

basic pattern forms regardless of the particle for the iRCS

lattice considered.

CONCLUSION & FUTURE WORK
We have presented a high-level theoretical calculation

of the N-turn map for an integrable optics ring with syn-

3 We use
√
I instead of the I derived in [1] because

√
I has the same units

as H .

chrotron motion and momentum-dependence in the ring.

That map suggests a phase-averaged Hamiltonian over many

turns which contains the primary dynamics, and is approxi-

mately conserved. We have found evidence for this Hamilto-

nian in tracking simulations of an integrable Rapid-Cycling

Synchrotron. This suggests that synchrobetatron coupling

retains integrability in an averaged sense over many turns.

This analysis assumes that we average over N periods, so

that Nενs(J) � 2π, which requires increasingly large N as

we approach the rf separatrix. If we sample data for N >
2π/νs(J) turns, we expect to see the invariants changing
slowly from turn to turn with no periodic return – this is

what we mean by saying that the integrable optics remains

integrable on the average for synchrobetatron coupling.

Future work will focus on comparing the theoretical pre-

diction that the transverse Hamiltonian shifts the synchrotron

tune to computational data. We expect that particles with

large initial H(0) will have a stronger effect on the syn-
chrotron tune. We also will work on understanding how

the perturbing term due to the unequal chromaticities affects

the existence of an invariant, and how unequal the chro-

maticities can be before we lose dynamic aperture. This will

lead to important guidelines for designing integrable optics

lattices.
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