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Abstract

A versatile symplectic integration scheme has been devel-

oped in order to produce simplified versions of non linear

lattices, preserving fundamental non-linear properties such

as the detuning with amplitude and energy, in addition to

the linear transport. The method has been applied to the

LHC and benchmarked against tracking simulations with

Sixtrack. This reduced lattice is made available as a re-

fined replacement of the simple rotation matrix often used in

multi-particle studies requiring a fast beam transport routine.

INTRODUCTION

The great computational time needed to track a distri-

bution of particles in a ring is one of the common limita-

tions encountered in beam dynamics simulations. The most

common solution is to use an element-by-element tracking

through a symplectic integration scheme [1, 2]. An alter-

native method for fast multi-particle symplectic tracking is

presented in this paper.

The proposed method that is close to the mentality of an

extensive use of the Baker–Campbell–Hausdorff formula

reproduces all the linear characteristics of the machine and

at the same time retains a certain accuracy for the non-linear

ones by using the least possible elements. The resulted

transfer map (effective lattice) that describes the studied

machine, in our case the LHC lattice, is symplectic and can

be adjusted to fit the needs of other rings.

LINEAR PART

In the ultra relativistic limit (βrel → 1), the Hamiltonian at

the linear sections (drifts, dipoles and quadrupoles, neglect-

ing edge effects) is given by Hlin = Vlin(q; s) +
∑
q

P2
q

2(δ + 1)
.

The linear sections in the effective lattice are periodic with

period L (as in the target lattice) and the energy spread in

one revolution is constant δ = const (no RF cavities are

considered). Thus, the betatron motion is described by the

Hill’s equation Q′′
+ k(s) Q = 0 where, k(s) = K(s)/(δ+ 1)

and k(s + L) = k(s). The solution of the linear uncoupled

transverse motion can be described by:

ZQ f
=M(Q,Q′)

ZQi
, (1)

where ZQ is a vector containing the dynamic variables

(Q,Q′), M(Q,Q′) is the known 2 × 2 rotation matrix that

transforms the dynamic variables from some initial (i) lat-

tice point to a final one ( f ). In order to use the conju-

gate variables q and Pq , the transformation q = Q and
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Q′
=

∂H

∂Pq

→ Pq = Q′(δ + 1) for the transverse motion

is used. As said, during one revolution ∆δ = 0 and so,

ω ≡ δ + 1 = const. Thus, the transformation ZQ → Zq is

an extended symplectic transformation [3] and is given by:

Zq = J ZQ ⇒

(
q

Pq

)
=

(
1 0

0 ω

) (
Q

Q′

)
, (2)

where J is the Jacobian of the transformation. For the new set

of dynamic variables (q, Pq) the rotation in Eq. (1) is trans-

formed according to the relation M(q,Pq ) = JM(Q,Q′)J−1.

The map M(q,Pq ) describes only the betatron motion. In

order to add the contribution from the dispersion, the trans-

formation of the Zq is given by:

(
q

Pq

)

f

=

(
M

(q,Pq )

1,1
M

(q,Pq )

1,2

M
(q,Pq )

2,1
M

(q,Pq )

2,2

) (
q

Pq

)

i

+

(
M

(q,Pq )

1,3

M
(q,Pq )

2,3

)
(ω−1) .

(3)

The unknown elements for the moment are the M
(q,Pq )

1,3
&

M
(q,Pq )

2,3
. Since the optical functions of the target lattice are

known, the expressions of theM
(q,Pq )

1,3
&M

(q,Pq )

2,3
can be cal-

culated by making use of the dispersion functions (Dq,DPq
).

Interpreted as the motion of a special particle with δ = 1,
Dq and DPq

can be transformed according to Eq. (3) by

making the following changes q → Dq , Pq → DPq
and

ω → 2. Solving with respect to M
(q,Pq )

1,3
& M

(q,Pq )

2,3
, a gen-

eral expression is obtained. For completeness, the elements

of the matrix M(q,Pq ) are the following ones:

M
(q,Pq )

1,1
=

√
βqf

βqi

(
Cos(ψq ) + αqi

Sin(ψq )
)

(4a)

M
(q,Pq )

1,2
=

√
βqf

βqi Sin(ψq )

ω
(4b)

M
(q,Pq )

1,3
= Dqf

− Dqi M
(q,Pq )

1,1
− DPqi

M
(q,Pq )

1,2
|ω→2 (4c)

M
(q,Pq )

2,1
= ω

(αqi
− αqf

)Cos(ψq ) − (1 + αqi
αqf

) Sin(ψq )
√
βqf

βqi

(4d)

M
(q,Pq )

2,2
=

√
βqi

βqf

(
Cos(ψq ) − αqf

Sin(ψq )
)

(4e)

M
(q,Pq )

2,3
= DPqf

− Dqi
M

(q,Pq )

2,1
|ω→2 − DPqi

M
(q,Pq )

2,2
, (4f)

where β and α are the Courant–Snyder parameters of the

lattice and ψ is an effective phase advance. All the optical

functions are the same or similar to the ones of the target

lattice and they are obtained by using the Methodical Acceler-

ator Design program [4]. If the study is not performed for the

ultra relativistic limit, theM
(q,Pq )

1,3
&M

(q,Pq )

2,3
elements must

be multiplied by βrel [5]. In order to capture the linear chro-

matic aberration, it should be ψ = µi→ f +2 πξNi→ f
δ where,
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µi→ f is the phase advance from si to s f and 2 πξNi→ f
δ is

the contribution of the natural chromaticity ξN from si to

s f .

In order to describe the longitudinal motion and its cou-

pling with the bending plane in a symplectic form, a rescaled

set of longitudinal variables (λ, δ) must be used. The lon-

gitudinal displacement l and its conjugate variable δ are

transformed according to Eq. (2) with the following changes

Q → δ, Q′ → l, q → δ̃ and Pq → λ. The new symplectic

set of the transverse and longitudinal variables is (q, Pq, λ, δ).

In such a way, additionally to Eq. (4), the evolution of the

longitudinal variables is given by:

λ f = λi +
(
M

(q,Pq )

1,3
M

(q,Pq )

2,1
−M

(q,Pq )

1,1
M

(q,Pq )

2,3

)
qi

+

(
M

(q,Pq )

1,3
M

(q,Pq )

2,2
−M

(q,Pq )

1,2
M

(q,Pq )

2,3

)
Pqi

+

(
Dq f

M
(q,Pq )

2,3
− DPqf

M
(q,Pq )

1,3
+

s f − si

γ2
rel

)
δi (5a)

δf = δi . (5b)

Both of the 4D or 6D maps are symplectic representations

of the linear motion in a lattice without coupling between

the transverse plains.

NON-LINEAR PART

After every linear rotation a lumped non-linear kick is per-

formed. In the case of the LHC effective lattice, combined

thin sextupoles and octupoles are used. The 6D non-linear

kick is given by:

x f = xi (6a)

Px f
= Pxi −

KS

2
(x2

i − y
2
i ) −

KO

2

(
x3
i

3
− xiy

2
i

)
(6b)

y f = yi (6c)

Py f = Pyi + KS xiyi +
KO

2

(
x2
i yi −

y
3
i

3

)
(6d)

λ f = λi (6e)

δf = δi . (6f)

with KS and KO being the normalized strengths of the sex-

tupole and octupole respectively. For a better control of the

chromaticity (linear and non-linear) and the tune shift with

amplitude, different families of non-linear elements can be

used. In view of having the smallest possible strengths (less

non-linear perturbations to the particles motion), the non-

linear kicks are placed in positions where the beta function

is maximum. In addition, an extra mitigation of the lattice

nonlinearities can be achieved if the phase advance ψ be-

tween the kicks of the same family is π+2πn with n being an

integer (the so-called −I transformer). The tune shift with

amplitude caused by the sextupolar kicks, despite being a

second order effect, perturbs the footprint quite significantly.

Knowing that it is sensitive to the phase advance between

the kicks of the same family [5], locating them in phases

of ψ equal to 3π or 5π minimizes the effect and preserves

the −I transformation, at least for the reduced lattice. The

values of the ψ, KS and KO can be automatically adjusted if

they are associated with the known analytical formulas of

the chromaticity and the tune shift with amplitude.

SIMULATION RESULTS

As a first check, footprints of the LHC lattice at flat bottom

(450 GeV) and at flat top (6.5 TeV) energies, are compared

with the ones from the relevant effective lattices. The very

good reproduction of the footprints is shown in Fig. 1. The

results for the full lattice and for the reduced one are plotted

with red lines and blue dots respectively. The energy spread

δ is set to zero while for the chromaticity ξ and the octupole

current Ioctu , the nominal values, for flat bottom and flat

top energies, are used. The characteristic value G, seen in

the following plots, corresponds to the total number of maps

used for the construction of an effective lattice. For the flat

(a) Flat bottom

(b) Flat top

Figure 1: The red lines correspond to the footprint taken

from the full lattice of the LHC and the blue dots to the one

from the effective lattice.

bottom results in Fig. 1a, the octupoles have low current and

so the opening of the footprint is significantly affected by the

sextupoles. Therefore, four families of sextupoles are used

in order to have a more refined control of the tune shift with

amplitude. For flat top energies (see Fig. 1b), the octupoles

are stronger (maximum Ioctu). Consequently, the footprint

is mainly formed by the octupoles and no extra sextupole

families are needed. Since the octupoles are sufficient for

the control of the footprint shape, less elements can be used

(G = 34). However, by using the least possible elements or
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by increasing the non-linear families in a reduced lattice with

a fixed G value, the strength of the non-linear kick is getting

larger. As a consequence the non-linear perturbations are

amplified.

In order to see what are the main resonances appearing

in the effective lattice and if they are the same with the

ones in the target lattice, frequency map analysis (FMA)

is employed. Being interested in the dynamics of the par-

ticles at large amplitudes (σ > 7), initial conditions pf

up to 10σ are taken. For these studies, a lattice with 2

sextupole families and G = 130 is used. The tune diffu-

sion seen in the next plots is calculated according to the

formula Log10[
√
(QX f

− QXi
)2 + (QYf

− QYi )
2] where, Qi

is the tune at the first 5000 turns and the Q f is the tune

calculated from the next 5000 turns [6]. As observed in

Fig. 2, all the significant resonances that appear in the target

lattice, Fig. 2a at flat bottom and Fig. 2c at flat top, play the

same crucial role in the effective lattice Figs. 2b, 2b. For

the particles at large amplitudes where the nonlinearities are

stronger, there is some discrepancy. However, the footprint

shape does not develop any strong deformation, especially

at flat top energies.

(a) Full lattice - flat bottom (b) Reduced lattice - flat bottom

(c) Full lattice - flat top (d) Reduced lattice - flat top

Figure 2: Frequency maps of the full lattice and the reduced ones,

at flat bottom (450 GeV) and flat top (6.5 TeV) energies

In order to better understand the dynamics of the particles

at large amplitudes, dynamic aperture (DA) studies are per-

formed and presented in Fig. 3. The DA values are obtained

from tracking studies of one million turns. The tracking

investigations for the target lattice are performed with Six-

Track [7]. The results for the full and reduced lattice are

plotted with red and black lines, respectively. At flat top

energies (see Fig. 3b), a perfect reproduction of the mini-

mum DA is achieved and the agreement with the target line

(red) for different initial conditions (Xi and Yi) is good. At

flat bottom energies Fig. 3a, even if the reproduction of the

minimum DA is not as accurate as for the flat top case, it

is close to the target value. In general, the LHC at flat bot-

tom energies suffers more from nonlinearities as observed

in Figs. 2b, 2d. This makes even more difficult the task for

the reduced lattice to reproduce the machine properties, at

these energies.

(a) Flat bottom

(b) Flat top

Figure 3: Dynamic aperture studies at flat bottom and flat

top energies. With red lines are the results from the full

lattice and with the black one the results from the reduced

lattice.

CONCLUSION

It is well known that the task of reproducing the proper-

ties of a complicated non-linear system with a simplified

alternative one is quite difficult. Having that in mind, the

method presented above for the construction of an effective

non-linear lattice has a very good agreement with the target

quantities. The method is quite flexible to be used for any

machine. It is ideal for studies that require fast multi-particle

tracking and that comonly use simple linear rotations with-

out taking into account the significant contribution of the

machine nonlinearities.
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