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Abstract
The resistive wall impedance of an elliptical vacuum

chamber in the classical regime with infinite thickness is
known analytically for ultra-relativistic beams by means of
the Yokoya form factors.

Starting from the longitudinal electric field of a point
charge moving at arbitrary speed in an elliptical vacuum
chamber, which we express in terms of Mathieu functions, in
this paper we take into account the finite conductivity of the
beam pipe walls and evaluate the longitudinal and quadrupo-
lar impedance for any beam velocity. We also obtain that the
quadrupolar impedance of a circular pipe is different from
zero, approaching zero only for ultra-relativistic particles.

Even if some of the results, in particular in the ultra-
relativistic limit, are already known and expressed in terms
of form factors, this approach is the first step towards the
calculation of the general problem of a multi-layer vacuum
chamber with different conductivities and of elliptic cross
section.

INTRODUCTION
The coupling impedance [1,2] of a resistive vacuum cham-

ber represents an important contribution to the total machine
impedance, in particular for large particle accelerators [3,4].
Among several geometries of the beam pipe, the elliptic
cross section is very common [5, 6].

The impedance of an elliptical lossy vacuum chamber,
and more in general with an arbitrary cross section, has been
derived in the ultra-relativistic limit in refs. [7–10]. It is
expressed in terms of form factors, known as Yokoya form
factors, which depend on the ellipticity of the beam pipe and
correspond to the ratio between the impedance with elliptic
cross section and circular one with radius equal to the minor
semi-axis of the ellipse. For a perfectly conducting elliptic
pipe, an equivalent radius at low frequency has also been
derived in ref [11].

The extension to the non relativistic case, for the elliptic
cross section, has been obtained in ref. [12], where, however,
a Gaussian beam distribution, and not a point charge, has
been used, leading to a quite complicated formulation of the
field. Another formulation, expressed as an integral form,
has been also derived in ref. [13] in the classical regime for
a good conductor.
∗ Work supported by the CERN PS-LIU project
† mauro.migliorati@uniroma1.it

In this paper, starting from the longitudinal electromag-
netic field of a point charge in an elliptical perfectly con-
ducting beam pipe obtained in ref. [14] as expansion of
Mathieu functions, we first derive the indirect, or scattered,
field due to the finite conductivity of the beam pipe. This
field, valid in the classical regime of infinite thickness and
for a good conductor, allows to derive the longitudinal and
the quadrupolar resistive wall impedance for arbitrary beam
velocities.

This represents a first step towards the derivation of the
resistive wall impedance for a multilayer vacuum chamber
with elliptical cross section.

LONGITUDINAL ELECTRIC FIELD IN A
PERFECTLY CONDUCTING ELLIPTICAL

PIPE
Let’s consider a point charge travelling with velocity

v = βc along the axis of an elliptical pipe. To describe
the geometry we use confocal elliptical coordinates ϕ, de-
scribing a set of hyperbolas having the same foci, and µ,
describing a set of confocal ellipses, as shown in Fig. 1.

Figure 1: Elliptic coordinates.

The relation between elliptical and Cartesian coordinates
is given by {

x = F cosh µ cos ϕ,
y = F sinh µ sin ϕ, (1)

where F is the focal distance of the ellipse, related to the
major and minor semi-axis a and b by

F =
√

a2 − b2. (2)
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These coordinates are useful to express the Mathieu func-
tions [15]. In particular we define the elliptic cosine even
function of negative argument −q as

ce2l(ϕ,−q) = (−1)l
∞∑
r=0
(−1)r A(2l)2r cos(2rϕ), (3)

and the corresponding radial modified Mathieu functions of
the first and second kind respectively as

Ce2l(µ,−q) = (−1)l
∞∑
r=0
(−1)r A(2l)2r cosh(2rµ),

Fek2l (µ,−q) =
p′2l

πA
(2l)
0

∑∞
r=0 A(2l)2r Ir (ν1)Kr (ν2),

(4)

with
p′2l = (−1)l

ce2l(0, q) ce2l(
π
2 , q)

A(2l)0

, (5)

and ν1 =
√

qe−µ and ν2 =
√

qeµ. Here Ir (x) and Kr (x) are
the modified Bessel functions of first and second kind re-
spectively. The expansion coefficients A(2l)2r can be obtained
by solving an eigenvalue problem of a truncated matrix [14].

With the above expressions, the longitudinal electric field
produced by a point charge moving on the axis of a perfectly
conducting elliptic vacuum chamber has been written in
ref. [14] as an infinite series of Mathieu functions:

E0
z = 2πG

∞∑
l=0

A(2l)0
p′2l

ce2l

( π
2
− ϕ, q

)
(
Fek2l (µ,−q) −

Fek2l (µ0,−q)
Ce2l (µ0,−q)

Ce2l (µ,−q)
)
, (6)

with

G = j
Z0Qk0

2πβ2γ2 , q =
(

k0F
2βγ

)2
, cosh µ0 =

a
F
. (7)

Here Q is the point charge, β and γ the relativistic factors,
Z0 the vacuum impedance, and k0 the wave number in free
space, equal to ω/c.

LONGITUDINAL ELECTRIC FIELD IN A
FINITE CONDUCTIVITY ELLIPTICAL

PIPE
The longitudinal electric field given by Eq. (6) allows

to derive the azimuthal magnetic field inside the perfectly
conducting pipe as

Hϕ =
βγ

kt Z0

∂E0
z

∂n
=

√
2βγ

kt Z0F
√

cosh 2µ − cos 2ϕ
∂E0

z

∂µ
, (8)

where kt = j k0/βγ, Z0 is the vacuum impedance, and n the
coordinate normal to the iso-azimuthal lines.

This magnetic field, evaluated at the boundary µ = µ0,
can be written in terms of the Wronskian

W2l(−q) = (−1)l+1 p′2l
πA(2l)0

ce2l

( π
2
,−q

)
ce2l (0,−q) , (9)

as

Hϕ =
2πβγG

√
2

kt Z0F
∞∑
l=0

(−1)l A(2l)0 ce2l(ϕ,−q)

p′2l
√

cosh 2µ0 − cos 2ϕ
W2l(−q)

Ce2l(µ0,−q)
. (10)

In case of a vacuum chamber with a finite conductivity σ,
we use the approximation that Eq. (10) remains valid, for a
good conductor, also at the boundary in the conducting ma-
terial. By applying then the Leontovich [16] condition, from
the magnetic field we can obtain the electric field induced
in the pipe wall as

Eσ
z (ϕ, µ0, q) =

1 + j
δσ

Hϕ = ZsHϕ, (11)

with δ the skin depth and Zs the surface impedance. This
relation is valid for a wall of infinite thickness.

We suppose now that the electric field in the vacuum has
the same configuration as that inside the perfectly conducting
pipe of Eq. (6) plus an additional term due to the scattered
field of the finite conducting wall, which we write as

E i
z(ϕ, µ, q) =

2
√

2πβγGZs

kt Z0F
∞∑
p=0
(−1)pD2pce2p(ϕ,−q)Ce2p(µ,−q), (12)

with unknown coefficients D2p. The total field E0
z + E i

z

evaluated at the boundary µ = µ0 must be equal to the field
given by Eq. (11). Since Eq. (6) is zero at µ = µ0, we then
remain with E i

z(ϕ, µ0, q) = Eσ
z (ϕ, µ0, q). This equation can

be used to obtain the coefficients D2p .
By using the orthogonality properties of the ce2l(ϕ,−q),

and after some manipulations, we obtain

D2p =
1

πCe2p(µ0,−q)

∞∑
l=0

A(2l)0 W2l(−q)

p′2lCe2l(µ0,−q)
∞∑
r=0

∞∑
t=0
(−1)(r+t)A(2p)2r A(2l)2t Lr,t (µ0), (13)

where

Lr,t (µ0) =

√
2πe−(2 |r−t |+1)µ0Γ

(
1
2 + |r − t |

)
Γ

(
1
2

)
|r − t |!

F
(
1
2
, |r − t | +

1
2

; |r − t | + 1; e−4µ0

)
+

√
2πe−(2r+2t+1)µ0Γ

(
1
2 + r + t

)
Γ

(
1
2

)
(r + t)!

F
(
1
2
, r + t +

1
2

; r + t + 1; e−4µ0

)
(14)
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with Γ the gamma function and F(a, b; c; z) the hypergeo-
metric function.

For sake of completeness, by using the same method for
a circular pipe, the electric field can be expressed as [17]

E i
z,circ = −

GβγZs

ktbZ0I2
0

(
k0b
βγ

) I0

(
k0r
βγ

)
, (15)

with I0(x) the zero order modified Bessel function of the
first kind.

LONGITUDINAL AND QUADRUPOLAR
RESISTIVE WALL IMPEDANCE

The longitudinal electric field given by Eq. (12), with
the coefficients of Eq. (13), can be used to determine the
longitudinal and the quadrupolar impedance. Indeed the
longitudinal impedance per unit of length is defined as [17]

dZ | |
dz
= −

E i
z

(
µ = 0, ϕ = π

2
)

Q
. (16)

The same expression (electric field in the origin) can be
used also for the circular case of Eq. (15). In Fig. 2 we show
the longitudinal impedance for β = 0.5, b = 35 mm, and
σ = 4 × 107 S/m as a function of frequency for the extreme
cases when the elliptic pipe tends to the circular and the flat
one. For the flat case we have used, as comparison, the IW2D

Figure 2: Longitudinal impedance vs frequency in the ex-
treme cases of circular and flat pipe.

code [18]. When comparing the impedance of the elliptic
pipe with the circular one, it is possible to define its ratio
at relativistic energies, known as Yokoya form factor [7],
which depends only on the coefficient qr = (a − b)/(a + b).

With the above expressions we are able to obtain the form
factor for any beam velocity. Indeed, it is possible to demon-
strate that this factor depends now on qr and on the parameter
kp = k0b/βγ. When this last term tends to zero we obtain
the Yokoya form factor. In Fig. 3 we show the form factor
as a function of qr for different values of kp compared with
the Yokoya form factor.

The same longitudinal field can also be used to obtain the
quadrupolar impedance. For the vertical case, for example,
we have

dZy,quad

dz
= −

β

k0Q
∂2E i

z

∂y2

�����
µ=0,ϕ= π

2

, (17)

Figure 3: Longitudinal form factor vs qr for different values
of kp = k0b/βγ.

where y is given by Eq. (1) or, for the cylindrical pipe, y = r .
This impedance is zero for the circular pipe only at ultra-

relativistic velocity. When β < 1, also in cylindrical sym-
metry, a quadrupolar impedance appears, as shown in Fig. 4,
where the quadrupolar impedance at different qr , for β = 0.5,
b = 35 mm, and σ = 4 × 107 S/m, is compared with the
circular and the flat cases [18].

Figure 4: Quadrupolar impedance vs frequency for different
values of qr .

CONCLUSION AND OUTLOOK
Starting from the expression of the longitudinal electric

field inside a perfectly conducting elliptic vacuum chamber
given as infinite series of Mathieu functions, we have de-
rived the longitudinal and the quadrupolar impedance in the
classic resistive wall regime taking into account for the finite
conductivity of the beam pipe.

We have obtained very good agreement in the extreme
cases of circular and flat beam pipe, and extended the longi-
tudinal Yokoya form factor at any beam energy.

We have also shown that a quadrupolar, not negligible
impedance appears also with circular symmetry in the non
ultra-relativistic regime.
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