Author: Zlobin, A.V.
Paper Title Page
TUZGBE1
Development of a 15 T Model Dipole for a Very High Energy Hadron Collider  
 
  • A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  The U.S. Magnet Development Program (MDP) is developing advanced accelerator magnet technology for future hadron colliders. In this context, a 15 T Nb3Sn dipole is being built and tested at Fermilab. This invited talk presents and discusses magnet design features and results including quench performance and magnetic measurements.  
slides icon Slides TUZGBE1 [13.535 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML025 Advantages and Challenges of Nb3Sn Superconducting Undulators 2734
 
  • A.V. Zlobin, E.Z. Barzi, D. Turrioni
    Fermilab, Batavia, Illinois, USA
  • Y. Ivanyushenkov, I. Kesgin
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Superconducting undulators (SCUs) employ superconducting coils, and due to high critical current density in a superconductor, outperform undulators based on permanent magnets in terms of the level of magnetic field. So far, most of the SCUs, including devices built at Advanced Photon Source (APS), use Nb-Ti superconductor. Utilization of Nb3Sn conductor offers a possibility to increase the undulator field even further but requires to overcome certain challenges that are described in this paper. Based on experience of developing Nb3Sn accelerator magnets at Fermi National Accelerator Laboratory, possible solutions are discussed. The achievable field levels for Nb3Sn version of existing APS and the future APS-Upgrade superconducting undulators are also presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML026 Large-Aperture High-Field Nb3Sn Dipole Magnets 2738
 
  • A.V. Zlobin, V.V. Kashikhin, I. Novitski
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
Large-aperture high-field dipole magnets based on Nb3Sn superconductor are necessary for various accelerator systems of future hadron and muon colliders. In hadron colliders, they are used needed for beam separation before and after interaction points. In a muon collider, they are considered for both the arc and the interaction regions to provide room for internal absorbers protecting magnets from the muon decay products. These magnets can also be used in test facilities to produce a background magnetic field for testing conductor samples or insert coils. High level of magnetic field and large aperture size lead to large Lorentz forces and mechanical strains and stresses which can damage brittle Nb3Sn coils. This paper describes conceptual designs of 120-mm aperture dipoles with magnetic fields up to 15 T based on cos-theta coils. Stress management technique and magnet parameters are also presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML027 Conceptual Design of a 17 T Nb3Sn Accelerator Dipole Magnet 2742
 
  • A.V. Zlobin, J.R. Carmichael, V.V. Kashikhin, I. Novitski
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
Nb3Sn dipole magnets with a nominal field of 16 T and sufficient operation margins are being considered for the LHC energy upgrade or a future Very High Energy Hadron Collider. Magnet design studies are being performed in the framework of the US Magnet Development Program to explore the limits of the Nb3Sn accelerator magnet technology and feasibility of such magnets, as well as to optimize the magnet design, performance parameters and cost. This paper describes the conceptual design of a 17 T dipole magnet with 60 mm aperture and 4-layer cos-theta coil being developed at Fermilab. The results of magnetic and mechanical analyses, including the non-linear effects in magnetic field and the possible stress management techniques, are also presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)