Author: Zhou, Z.R.
Paper Title Page
THPML113 Design and Simulation of the Waveguide Coupler for the Cavity Beam Monitor 4932
 
  • Q. Wang, Q. Luo, B.G. Sun, F.F. Wu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y.W. Wu
    USTC, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by The National Key Research and Development Program of China (2016YFA0401900), NSFC (11375178, 11575181) and the Fundamental Research Funds for the Central Universities (WK2310000046)
The waveguide coupling is an important way to extract the signals of the specific eigenmodes required. The design of the waveguide coupler, including the waveguide-to-coaxial adapter behind it for the cavity bunch length monitor is presented. The influence of the dimension parameters is analyzed, which offers the theoretical support for the design and application of cavity bunch length monitor or cavity beam position monitor (CBPM). A series simulation based on CST is performed to verify the feasibility, and the simulation results show good performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML140 Radiation Monitoring System of HLSII 5011
 
  • Lin, H.S. Lin, Y.Q. Cai, S.P. Jiang, Z.B. Sun, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China 11675170 By the Fundamental Research Funds for the Central Universities WK2310000056
Monitoring of ionizing radiation of synchrotron radiation facility is very important for the safety of staff and users of the light source. Radiation monitoring system of HLSII has been built and the whole system consists of local radiation monitoring spots and central control system, and a web-based monitoring dynamic release system. The local radiation monitoring spot consists of a high air pressure ionization type gamma detector and a BF3 counting tube neutron detector, and the radiation data are calculated by microcontroller locally and acquired by the data server for further processing. The dynamic release system is integrated with EPICS interface and radiation safety interlock system. Other accelerator systems could obtain radiation data from the server and the interlock system is triggered by the radiation data to shut down the machine in case the radiation exceeds the safety threshold.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)