Paper | Title | Page |
---|---|---|
THPMK125 | Development of Non-Evaporable Getter (NEG) Coatings on Small Diameter Vacuum Chambers for Diffraction-Limited Storage Ring | 4611 |
|
||
Design of the fourth generation Diffraction-Limited Storage Ring reduces aperture of vacuum chambers to a few centimeters. To satisfy the small aperture, the intense photon bombardment and the requirement of low pressure, most of the beam pipes need to be deposited with Ti-Zr-V nonevaporable getter (NEG) thin films. NEG can provide distributed pumping and low gas desorption and allow to achieve low pressure in narrow and conductance limited chambers. In this paper, Ti-Zr-V thin film was deposited by DC magnetron sputtering using Ti-Zr-V alloy target. The morphology and thickness of Ti-Zr-V are characterized by Scanning Electron Microscopy (SEM). The average grain size is evaluated using X-ray diffraction (XRD). The composition and the corresponding chemical bonding of the thin film are analyzed by X-ray Photoelectron Spectroscopy (XPS). Finally, the adhesion between the film and substrate and the vacuum performance are evaluated. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK125 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML128 | Production and Secondary Electron Yield Test of Amorphous Carbon Thin Film | 4980 |
|
||
Amorphous carbon (a-C) thin film applied to vacuum chambers of high-energy particle accelerators can decrease secondary electron yield(SEY)and suppress electron-cloud effectively. A dc magnetron sputtering apparatus to obtain a-C film has been designed. With the equipment, a-C thin film can be deposited on the inner face of stainless steel pipes ultimately which is uniform and high-quality. Meanwhile, it is found that a-C has a low SEY<1.2 measured by the secondary electron emission measurement set-up in the National Synchrotron Radiation Laboratory. The result indicates that a-C is an ideal material for modern accelerators. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML128 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML129 | Deposition and Characterization of TiZrHfV films by DC Magnetron Sputtering | 4983 |
|
||
The new generation of accelerators places higher demands on the surfaces of vacuum chamber materials. Search for low secondary electron yield (SEY) materials and an effective vacuum chamber surface treatment process, which can effectively reduce the electronic cloud effect, are important early works for the new generation of accelerators. In this work, we revealed the SEY characteristics of Ti-Zr-Hf-V NEG films and Ti-Zr-V NEG films which were deposited on Si (111) substrates using direct current magnetron sputtering method. The surface morphology and surface chemical bonding information were collected by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). With the same parameters, the maximum SEY of Ti-Zr-Hf-V NEG films and Ti-Zr-V NEG films are 1.24 and 1.51, respectively. These results are of great significance for the next-generation particle accelerators. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML129 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML134 | Design of the Magnets of the HALS Project | 4998 |
|
||
Funding: Work supported by the National Nature Science Foundation of China under Grant Nos.11375176 * hlxu@ustc.edu.cn ** zhbo@ustc.edu.cn The Hefei Advanced Light Source (HALS) is a future soft X-ray diffraction-limited storage ring at NSRL, this project aims to improve the brilliance and coherence of the X-ray beams and to decrease the horizontal emittance. The lattice of the HALS ring relies on magnets with demanding specifications, including combined function dipole-quadrupoles (DQs) with high gradients, dipoles with longitudinal gradients (DLs), high gradient quadrupoles and strong sextupoles. The combined dipole-quadrupole design developed is between the offset quadrupole and septum quadrupole types. The longitudinal-gradient dipoles are permanent magnets. The quadrupoles and sextupoles rely on a more conventional design. All the magnets have been designed using POSSION, Radia, and OPERA-3D. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML134 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML135 | Design of the Combined Function Dipole-Quadrupoles (DQS) with High Gradients | 5001 |
|
||
Funding: Work supported by the National Nature Science Foundation of China under Grant Nos.11375176 * hlxu@ustc.edu.cn **zhbo@ustc.edu.cn Combined dipole-quadrupoles (DQs) can be obtained with the design of tapered dipole or offset quadrupole. However, the tapered dipole design can not achieve a high gradient field, as it will lead to poor field quality in the low field area of the magnet bore, and the design of offset quadrupole will increase the magnet size and power consumption. Finally, the dipole-quadrupole design developed is between the offset quadrupole and septum quadrupole types. The dimensions of the poles and the coils of the low field side have been reduced. The 2D pole profile is simulated and optimized by using POSSION and Radia, while the 3D modle using Radia and OPERA-3D. The end shimming and chamfer are modelled to meet the field uniformity requirement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML135 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |