Author: Zaltsman, A.
Paper Title Page
MOPMF016 Progress on RCS eRHIC Injector Design 115
 
  • V.H. Ranjbar, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, D.M. Gassner, H.-C. Hseuh, I. Marneris, F. Méot, M.G. Minty, C. Montag, V. Ptitsyn, K.S. Smith, S. Tepikian, F.J. Willeke, H. Witte, B. P. Xiao, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBD3 eRHIC Design Status 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.790 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF032 RF Conceptual Design of Normal Conducting Cavity for an eRHIC Rapid Cycling Synchrotron 1316
 
  • B. P. Xiao, M. Blaskiewicz, J.M. Brennan, D. Holmes, K.S. Smith, T. Xin, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
The Rapid Cycling Synchrotron (RCS) for the eRHIC Ring-Ring design will provide on energy injection (up to 18 GeV) of high charge, polarized electron bunches to the eRHIC electron storage ring. The RF system comprises a large number of 563MHz fundamental cavities, providing up to 45MV per turn. The cavities will operate in pulsed mode with <20% duty factor, at a repetition rate of 1 Hz. In this paper we report the conceptual RF design of the cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF034 Measuring the Electrical Center and Field Flatness of 704 MHz Deflecting Cavity for LEReC with Wire Stretching System 1320
 
  • T. Xin, J.M. Brennan, J.C.B. Brutus, K. Mernick, K.S. Smith, B. P. Xiao, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • W. Johnson
    SBU, Stony Brook, New York, USA
  • H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
704 MHz deflecting cavity was designed for the Low Energy RHIC electron Cooling (LEReC) project. The cavity will serve as a major component in diagnostic line. In LEReC project the requirement on the energy spread of the electron beam is extremely high (better than 10-4) and the diagnostic system has to to be designed accordingly. The 704 MHz transverse deflecting cavity provides the vertical kick to the beam after it passes through the dispersion dipole so that we can measure the energy spread of the core of the bunch. Traditional way of determining the electrical center of the cavity involves the needle pulling and integration of the signal which is prone to the cumulative error. We present the measurement result from a wire stretching system that is much more efficient and accurate compared to the bead/needle pulling method. Both simulation and experimental results are shown in this paper and the potential in further application is discussed at the end.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)