Author: Wu, Y.H.
Paper Title Page
WEPAL044 ENSOLVE : A Simulation Code for FXR LIA Downstream Section 2271
 
  • Y.H. Wu, Y.-J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspi-ces of the U.S. Department of Energy by Law-rence Livermore National Laboratory under Contract DE-AC52-07NA27344.
In this paper, we describe an envelope code, ENSOLVE. It solves the rms beam envelope equation by including space change depression of the potential, spherical aberration of the so-lenoidal lens, emittance growth and focusing effects of backstreaming ions in the final focus region. In this paper, we focus on the physics included for beam transport simulations in the downstream section of flash x-ray radiography linear induction accelerators, such as FXR LIA. We have used ENSOLVE to design final focus tunes for FXR LIA downstream section
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK045 Summary of Beam Operation Capability at FXR LIA 3316
 
  • Y.H. Wu, J. Ellsworth
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.
In this paper we summarize the current beam operation capability of FXR linear induc-tion accelerator (LIA) at LLNL. Experi-mental measurements for electron beam pa-rameters at different beam operations are pre-sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)