Author: Wang, S.W.
Paper Title Page
THPMK129 Lattice Tweaking Using A Tune Knob Based On Global Mechanism 4620
SUSPF008   use link to see paper's listing under its alternate paper code  
 
  • S.W. Wang, B. Li, J.L. Li, W.B. Wu, W. Xu, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • J.L. Li
    IHEP, Beijing, People's Republic of China
 
  The transverse tunes are important parameters for a storage ring and tune knobs are used to adjust the tunes in a specific range. Usually for large rings, a set of quadrupoles is set on the straight sections for the use of tune knob. A tune knob has been designed for the HLS-II storage ring without affecting the twiss parameters of the injection section. This paper introduces the design and online test of this tune knob. The quadrupoles are adjusted according to the simulation results and the tunes are measured and calibrated. The online test results show that the tune knob design works well on the HLS-II storage ring and can be applied for various machine studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK132 Generation of Terahertz Synchrotron Radiation Using Laser-Bunch Slicing at Hefei Light Source 4626
 
  • W. Xu, S.W. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Hefei Light Source is a second-generation low-energy synchrotron light source. The low energy machine is ca- pable of generating intense Terahertz radiation through co- herent synchrotron radiation. To realize this, one method is to shorten the bunch length to the same level of its radi- ation wavelength, e.g. by adopting low-α lattice. Another method is to modulate the electron bunch to produce mi- costructure at picosecond scale and intense Terahertz co- herent synchrotron radiation can be obtained due to the in- crease ofthebunchformfactor. This techniqueis calledthe laser bunch slicing method which introduces a laser beam into an undulator to interact with the electron bunches. In this paper we report our work on the simulation of the laser bunch slicing at Hefei Light Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML128 Production and Secondary Electron Yield Test of Amorphous Carbon Thin Film 4980
 
  • Y.X. Zhang, X.Q. Ge, S.W. Wang, Y. Wang, W. Wei, B. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Amorphous carbon (a-C) thin film applied to vacuum chambers of high-energy particle accelerators can decrease secondary electron yield(SEY)and suppress electron-cloud effectively. A dc magnetron sputtering apparatus to obtain a-C film has been designed. With the equipment, a-C thin film can be deposited on the inner face of stainless steel pipes ultimately which is uniform and high-quality. Meanwhile, it is found that a-C has a low SEY<1.2 measured by the secondary electron emission measurement set-up in the National Synchrotron Radiation Laboratory. The result indicates that a-C is an ideal material for modern accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)