Author: Wang, J.
Paper Title Page
TUZGBD3 Beam Diagnostics for the APS MBA Upgrade 1204
 
  • N. Sereno, N.D. Arnold, R.W. Blake, A.R. Brill, H. Bui, J. Carwardine, G. Decker, L. Emery, T. Fors, P.S. Kallakuri, R.T. Keane, R.M. Lill, D.R. Paskvan, A.F. Pietryla, H. Shang, X. Sun, S. Veseli, J. Wang, S. Xu, B.X. Yang
    ANL, Argonne, Illinois, USA
 
  The Advanced Photon Source (APS) is currently in the preliminary design phase for a multi-bend acromat (MBA) lattice upgrade. Beam stability is critical where the requirements are driven from the beam size which is expected to approach 4 microns vertically at the insertion device (ID) source points. AC rms beam stability requirements are defined as 10 % the minimum source size at the ID in the band 0.01-1000 Hz. The vertical plane stability goal is the most ambitious requiring a stability of 400 nm at the ID source point. In addition, long term drift defined as motion over a seven day timescale can be no more than 1 micron. In order to achieve these demanding beam stability requirements, a suite of beam diagnostics will be required including rf BPMs, X-ray BPMs, a mechanical motion measurement system, beam size monitors and a real time orbit feedback system. In addition, a tune measurement system, transverse multi-bunch feedback system and current monitors are planned for the upgrade. We report on the beam diagnostics design and APS storage ring R&D results used to inform the design.  
slides icon Slides TUZGBD3 [16.748 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF008 Preliminary Designs and Test Results of Bipolar Power Supplies for APS Upgrade Storage Ring 2381
 
  • J. Wang, I.A. Abid, R.T. Keane, G.S. Sprau
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The upgrade (APS-U) of the APS storage ring requires more than 1200 bipolar power supplies. Based on the performance requirement, the power supplies can be divided into two categories: fast bipolar power supplies for fast correctors and slow bipolar power supplies for trim coils and slow correctors. The common requirement of the power supplies is a bipolar output current up to ±15 A. The main difference is that the fast corrector power supplies require a small-signal bandwidth of 10 kHz. A prototype DC/DC power converter utilizing a MOSFET H-bridge circuit with a 500 kHz PWM was successfully developed through the R&D program, achieving the required bandwidth with less than 3-dB attenuation for a signal 0.5% of ±15 A. After the successful R&D program, the preliminary designs were performed to further improve the performance and to finalize the schematics, the PCB layouts, and the power supply constructions. The two types of the power supplies share the majority of the designs and features, with minor differences for the different bandwidth requirement. This paper presents the preliminary design, the key power supply functions and features, and the test results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD1 The Upgrade of the Advanced Photon Source 2872
 
  • M. Borland, M. Abliz, N.D. Arnold, T.G. Berenc, J.M. Byrd, J.R. Calvey, J.A. Carter, J. Carwardine, H. Cease, Z.A. Conway, G. Decker, J.C. Dooling, L. Emery, J.D. Fuerst, K.C. Harkay, A.K. Jain, M.S. Jaski, P.S. Kallakuri, M.P. Kelly, S.H. Kim, R.M. Lill, R.R. Lindberg, J. Liu, Z. Liu, J. Nudell, C.A. Preissner, V. Sajaev, N. Sereno, X. Sun, Y.P. Sun, S. Veseli, J. Wang, U. Wienands, A. Xiao, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  After decades of successful operation as a 7-GeV synchrotron radiation source, the Advanced Photon Source is pursing a major upgrade that involves replacement of the storage ring with an ultra-low emittance multi-bend achromat design. Using a seven-bend hybrid multi-bend achromat with reverse bending magnets gives a natural emittance of 42 pm operated at 6 GeV. The x-ray brightness is predicted to increase by more than two orders of magnitude. Challenges are many, but appear manageable based on thorough simulation and in light of the experience gained from world-wide operation of 3\text{rd}-generation light sources. The upgraded ring will operate in swap-out mode, which has allowed pushing the performance beyond the limits imposed by conventional operation.  
slides icon Slides THXGBD1 [14.684 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)