Paper | Title | Page |
---|---|---|
TUPMF086 | Status of the ARES RF Gun at SINBAD: From its Characterization and Installation towards Commissioning | 1474 |
|
||
The SINBAD facility (Short and INnovative Bunches and Accelerators at DESY) is foreseen to host multiple experiments relating to the production of ultra-short electron bunches and novel high gradient acceleration techniques. The SINBAD-ARES linac will be a conventional S-band linear RF accelerator allowing the production of low charge (0.5 pC - tens pC) ultra-short electron bunches (FWHM length =< 1 fs - few fs) with 100 MeV energy. The installation of the linac will proceed in stages. In this paper we report on the status of the characterization of the ARES RF gun and the installations of the related infrastructure. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF086 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML035 | FELs Driven by Laser Plasma Accelerators Operated with Transverse Gradient Undulators | 1615 |
|
||
Laser Plasma Accelerators produce beams with a significantly higher energy spread (up to a few percent) compared to conventional electron sources. The high energy spread increases significantly the gain length when used for an FEL. In order to reduce the gain length of the FEL the Transverse Gradient Undulators (TGUs) instead of conventional undulators were proposed. In this paper the limits of this concept are discussed using a modified Version of the GENESIS program*.
*Zhirong Huang et al., Phys. Rev. Lett., 109, 204801 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML035 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML041 | Two-Stage Laser-Driven Plasma Acceleration With External Injection for EuPRAXIA | 1634 |
|
||
The EuPRAXIA (European Particle Research Accelerator with eXcellence In Applications) project aims at producing a conceptual design for the worldwide plasma-based accelerator facility, capable of delivering multi-GeV electron beams with high quality. This accelerator facility will be used for various user applications such as compact X-ray sources for medical imaging and high-energy physics detector tests. EuPRAXIA explores different approaches to plasma acceleration techniques. Laser-driven plasma wakefield acceleration with external injection of an RF-generated electron beam is one of the basic research directions of EuPRAXIA. We present studies of electron beam acceleration to GeV energies by a two-stage laser wakefield acceleration with external injection from an RF accelerator. Electron beam injection, acceleration and extraction from the plasma, using particle-in-cell simulations, are investigated. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF032 | Simulation Study of an RF Injector for the LWFA Configuration at EuPRAXIA | 3025 |
|
||
The Horizon 2020 Project EuPRAXIA (EuropeanPlasma Research Accelerator with eXcellence In Applications) aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using a plasma accelerator. LWFA with external injection from an RF accelerator is one of the most promising configurations. In order to achieve the goal parameters for the 5 GeV, 30 pC electron beam at the entrance of the undulator, a high-quality electron beam with bunch length of less than 10 fs (FWHM) and matched beta functions (~1 mm) at the plasma entrance is required. In addition, from the compactness point of view, the injection energy is desired to be as low as possible. A hybrid compression scheme is considered in this paper and a detailed start-to-end simulation is presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF032 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |