Author: Vretenar, M.
Paper Title Page
TUPAF002 Beam Commissioning of the 750 MHz Proton RFQ for the LIGHT Prototype 658
 
  • V.A. Dimov, M. Caldara, A. Degiovanni, L.S. Esposito, D.A. Fink, M. Giunta, A. Jeff, A. Valloni
    AVO-ADAM, Meyrin, Switzerland
  • A.M. Lombardi, S.J. Mathot, M. Vretenar
    CERN, Geneva, Switzerland
 
  ADAM (Application of Detectors and Accelerators to Medicine), a CERN spin-off company, is developing the Linac for Image Guided Hadron Therapy, LIGHT, which will accelerate proton beams up to 230 MeV. The design of the linac will allow fast intensity and energy modulation for pencil-beam scanning during cancer treatment. The linac consists of a 40 keV Proton Injector; a 750 MHz Radio Frequency Quadrupole (RFQ) accelerating the proton beam up to 5 MeV; a 3 GHz Side Coupled Drift Tube Linac (SCDTL) up to 37.5 MeV; and a 3 GHz Cell Coupled Linac (CCL) section up to 230 MeV. A prototype of LIGHT is being commissioned progressively with the installation of the accelerating structures at a CERN site. The beam commissioning of the RFQ, which was designed and built by CERN, was completed in 2017 using a movable beam diagnostic test bench with various instruments. This paper reports on the RFQ commissioning strategy and the results of the beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF044 Schedule Evolution of the Linac4 Installation During the Lifetime of the Linac4 Project and Connection Forecast 794
 
  • J. Coupard, A. Berjillos, J.-P. Corso, K. Foraz, B. Nicquevert, E. Paulat, M. Vretenar
    CERN, Geneva, Switzerland
 
  The new CERN linear accelerator Linac4 started the installation phase in 2010 after the delivery of the new building and tunnel by the civil engineering and was inaugurated six years later. It will be connected to the CERN accelerators chain and replace the current proton linear accelerator, Linac2, during the second long shut-down (LS2) of the Large Hadron Collider (LHC) in 2019. This paper aims to summarize the schedule evolution through the different phases of installation, from general services to machine installation, highlight the key factors that contributed to drive the schedule (safety, logistics and integration) and describe the coordination study of the future connection (integration, schedule, logistics, constraints and priorities).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)