Paper |
Title |
Page |
TUPAF079 |
Scaled Alvarez-Cavity Model Investigations for the UNILAC Upgrade |
916 |
|
- M. Heilmann, X. Du, L. Groening, M. Kaiser, S. Mickat, M. Vossberg
GSI, Darmstadt, Germany
- A. Seibel
IAP, Frankfurt am Main, Germany
|
|
|
The 1:3 scaled aluminum model of an Alvarez-type cavity with 10 gaps was used for comparison of simulation with measurement for the frequency and the electric field on axis. The scaled frequency is 325.224 MHz and an Alvarez cavity has a small frequency tuning range. With this scaled model it was possible to apply different stem configurations for each drift tube to damp parasitic modes and to increase the field stability. The new drift tubes have an optimized free-formed profile on the end plates in order to increase the shunt impedance. In special the assembly, positioning and alignment of the drift tubes can be tested and the frequency change can be investigated in this respect.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF079
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF086 |
Adaption of the HSI -RFQ Rf-Properties to an Improved Beam Dynamics Layout |
938 |
|
- M. Vossberg, L. Groening, S. Mickat, H. Vormann, C. Xiao
GSI, Darmstadt, Germany
- V. Bencini, J.M. Garland, J.-B. Lallement, A.M. Lombardi
CERN, Geneva, Switzerland
|
|
|
The GSI accelerator facility comprising the linear accelerator UNILAC and the synchrotron SIS18 will be used in future mainly as the injector for the Facility for Anti-Proton and Ion Research (FAIR) being under construction. FAIR requires high beam brilliance and the UNILAC's RFQ electrodes must be upgraded with respect to their beam dynamics design. The new layout is currently being conducted at CERN with the aim of adjusting the electrode voltage according to the design voltage of 123 kV. CST simulations performed at GSI assure that the resonance frequency with the new electrode geometry is recuperated through corrections of the carrier rings. Simulations on the frequency dependence of the rings shapes and their impact on the voltage distribution along the RFQ are presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF086
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THYGBF3 |
Challenges of FAIR Phase 0 |
2947 |
|
- M. Bai, A. Adonin, S. Appel, R. Bär, M.C. Bellachioma, U. Blell, C. Dimopoulou, G. Franchetti, O. Geithner, P. Gerhard, L. Groening, F. Herfurth, R. Hess, R. Hollinger, H.C. Hüther, H. Klingbeil, A. Krämer, S.A. Litvinov, F. Maimone, D. Ondreka, N. Pyka, S. Reimann, A. Reiter, M. Sapinski, B. Schlitt, G. Schreiber, M. Schwickert, D. Severin, R. Singh, P.J. Spiller, J. Stadlmann, M. Steck, R.J. Steinhagen, K. Tinschert, M. Vossberg, G. Walter, U. Weinrich
GSI, Darmstadt, Germany
|
|
|
After two-year's shutdown, the GSI accelerators plus the latest addition of storage ring CRYRING, will be back into operation in 2018 as the FAIR phase 0 with the goal to fulfill the needs of scientific community and the FAIR accelerators and detector development. Even though GSI has been well known for its operation of a variety of ion beams ranging from proton up to uranium for multi research areas such as nuclear physics, astrophysics, biophysics, material science, the upcoming beam time faces a number of challenges in re-commissioning its existing circular accelerators with brand new control system and upgrade of beam instrumentations, as well as in rising failures of dated components and systems. The cycling synchrotron SIS18 has been undergoing a set of upgrade measures for fulfilling future FAIR operation, among which many measures will also be commissioned during the upcoming beam time. This paper presents the highlights of the challenges such as re-establishing the high intensity heavy ion operation as well as parallel operation mode for serving multi users. The status of preparation including commissioning results will also be reported.
|
|
|
Slides THYGBF3 [2.948 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF3
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|