Author: Velotti, F.M.
Paper Title Page
TUPAF031 Beam Simulation Studies for the Upgrade of the SPS Beam Dumping System 747
 
  • C. Heßler, W. Bartmann, E. Carlier, L. Ducimetière, B. Goddard, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The SPS at CERN currently uses a beam dumping system that is installed in the long straight section 1 (LSS1) of the SPS. This system consists of two beam stopper blocks for low and high energy beams, as well as two vertical and three horizontal kicker magnets, which deflect and dilute the beam on the dumps. Within the frame of the LHC injector upgrade project (LIU) the beam dumping system will be relocated to long straight section 5 (LSS5) and upgraded with an additional vertical kicker, new main switches and a single new beam dump, which covers the full energy range. The impact of a possible increase of the vertical kicker rise time on the beam has been studied in simulations with MAD-X for the different optics in the SPS. Furthermore, the impact on the beam in failure scenarios such as the non-firing of one kicker has been investigated. The results of these studies will be presented and discussed in this paper. Operational mitigation methods to deal with an increased rise time will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF033 Beam Optics Studies for BDF and for Tests of a Prototype Target 754
 
  • C. Heßler, M. Calviani, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, E. Lopez Sola, F.M. Velotti
    CERN, Geneva, Switzerland
 
  Within the frame of the Physics Beyond Collider project a new fixed target facility at the SPS North Area, the so-called Beam Dump Facility (BDF), is under study. BDF requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. This results in an exceptionally high average beam power of 355 kW on the target, which is a major challenge. To validate the target design, a test of a prototype target is planned for 2018 at an existing North Area beam line. A large part of this beam line is in common with the future BDF beam line with comparable beam characteristics and several measurement campaigns were performed in 2017 to study the optics of the line in preparation for the test. The intrinsic characteristics of the slow extraction process make the precise characterisation of the beam reaching the target particularly challenging. This paper presents beam and lattice characterisation methods and associated measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF035 Observations of SPS Slow-Extracted Spill Quality Degradation and Possible Improvements 761
 
  • F.M. Velotti, H. Bartosik, K. Cornelis, M.A. Fraser, B. Goddard, S. Hirlaender, V. Kain, O. Michels, M. Pari
    CERN, Geneva, Switzerland
 
  The SPS delivers slow extracted proton and heavy ion spills of several seconds to the North Area fixed target experiments with a very high duty factor. Reduced machine reproducibility due to magnetic history and power supply ripples on the main circuits lead however to frequent degradation of the spill duty factor. In this paper, the measured effect of the SPS magnetic history on spill quality and principal machine parameters is presented. Another detailed measurement campaign was aimed at characterising the frequency content and response of the spill to noise on the main power supplies ripples. The main findings of this study will also be reported. Finally, simulations of possible improvements based on the data acquired are discussed, as well as an extrapolation to the possible spill quality after the implementation of the improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF050 Beam Dynamics Simulations of the Effect of Power Converter Ripple on Slow Extraction at the CERN SPS 818
 
  • J. Prieto, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The SPS provides slowly extracted protons at 400 GeV/c to CERN's North Area Fixed Target experiments over spills of duration from 1-10 seconds. Low frequency ripple on the current in the main magnets originating from their power converters is a common issue that degrades the slow-extracted spill quality. In order to better understand how the stability of the power converters affects losses, beam emittance and spill quality, particle tracking simulations were carried out using MAD-X and compared to measurements, with the impact of each magnet circuit investigated systematically. The implications for the performance of the SPS slow extraction are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF052 Effects of Electrostatic Septum Alignment on Particle Loss During Slow Extraction at CERN SPS 826
 
  • J. Prieto, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
  • M.A. Kagan
    SLAC, Menlo Park, California, USA
 
  Slow extraction is an intrinsically lossy process that splits the beam with an electrostatic septum (ES), employing a thin-wire array to delimit the high electric field region that deflects the beam into the extraction channel. At CERN's Super Proton Synchrotron (SPS) the ES is over 16 m long and composed of 5 separate units containing separate wire-arrays that can be moved independently. The tanks are all mounted on a single support structure that can move the ensemble coherently. As a result, the large number of positional degrees of freedom complicates the alignment procedure in operation. Obtaining and maintaining accurate alignment of the ES with the beam is therefore crucial for minimising beam loss. In this paper, we investigate the alignment procedure for different operational scenarios using particle tracking simulations to understand the beam loss along the extraction straight as a function of the relative positions of each of the 5 separate ES units. An important aspect of the study was to understand the required alignment tolerance to achieve optimum extraction efficiency for a given configuration of wire-array thicknesses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF053 Optimization of Diffuser (Pre-Scatterer) Configurations for Slow Extraction Loss Reduction at Electrostatic Septa 830
 
  • B. Goddard, B. Balhan, J.C.C.M. Borburgh, M.A. Fraser, L.O. Jorat, V. Kain, C. Lolliot, L.S. Stoel, P. Van Trappen, F.M. Velotti
    CERN, Geneva, Switzerland
  • D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • V.P. Nagaslaev
    Fermilab, Batavia, Illinois, USA
 
  Uncontrolled beam loss at the electrostatic septum is a performance limit for several existing or planned high power hadron accelerators delivering slow-extracted spills to fixed targets. A passive diffuser, or pre-scatterer, in a suitable configuration has been shown to reduce such beamloss significantly, with the actual gain factor depending on the parameters and details of the extraction process and hardware. In this paper, the optimization of diffuser configurations is investigated for a range of beam energies and extraction conditions, and the sensitivity to the available parameters explored via simulation results. The advantages and limitations of the diffuser are discussed and conclusions drawn concerning the specific case studies of the 8 GeV Fermilab debuncher ring and 400 GeV CERN SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF054 Slow Extraction Efficiency Measurements at the CERN SPS 834
 
  • M.A. Fraser, K. Cornelis, L.S. Esposito, B. Goddard, V. Kain, F. Roncarolo, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The high efficiency of most slow extraction systems makes quantifying the exact amount of beam lost in the process extremely challenging. This is compounded by the lack of time structure in the extracted beam, as is typically required by the high-energy physics experiments, and the difficulty in accurately calibrating D.C. intensity monitors in the extraction line at count rates of ~ 1013 Hz. As a result, it is common for the extraction inefficiency to be measured by calibrating the beam loss signal induced by the slow extraction process itself. In this paper, measurements of the extraction efficiency performed at the CERN Super Proton Synchrotron for the third-integer resonant slow extraction of 400 GeV protons over recent years will be presented and compared to expectation from simulation. The technique employed will be discussed along with its limitations and an outlook towards a future online extraction efficiency monitoring system will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF055 Progress Toward a Dynamic Extraction Bump for Slow Extraction in the CERN SPS 838
 
  • L.S. Stoel, M. Benedikt, M.A. Fraser, B. Goddard, J. Prieto, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The possibility of reducing the angular spread of slow extracted particles with a time-dependent extraction bump at the CERN Super Proton Synchrotron (SPS) is under investigation. In order to create this so-called dynamic bump, two orthogonal knobs were designed to enable independent movements of the beam in position and angle at the upstream end of the electrostatic extraction septum (ES). With the present slow extraction scheme, simulations show that the use of a dynamic bump can reduce the angular spread at the ES by roughly a factor two and reduce beam loss on the ES. A reduction in the angular spread is also a prerequisite to exploit the full potential of other loss reduction techniques being considered for implementation at the SPS, like the active or passive diffusers planned for installation upstream of the ES in 2018. In this paper, the simulated loss reduction with a dynamic bump alone or in combination with other loss reduction techniques will be assessed, the first beam-based tests of the dynamic bump presented, the details of its implementation examined and its potential for future operation at the SPS discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF059 Design and Evaluation of FCC-hh Injection Protection Schemes 854
 
  • E. Renner, M.J. Barnes, W. Bartmann, C. Bracco, R. Bruce, F. Burkart, B. Goddard, A. Lechner, L.S. Stoel, F.M. Velotti, C. Wiesner, D. Woog
    CERN, Geneva, Switzerland
 
  The Future Circular Collider (FCC) study considers several injector scenarios for FCC-hh, the proposed 100~TeV centre of mass hadron collider located at CERN. The investigated options include amongst others to use the LHC at 3.3~TeV or a superconducting SPS at 1.3~TeV as a High Energy Booster (HEB). Due to the high energy of the injected proton beam and the short time constant of injection failures, a thorough consideration of potential failure cases is of major importance. Further attention has to be given to the fact that the injection is - as in LHC - located upstream of the side experiments. Failure scenarios are identified for both injector options, appropriate designs of injection protection schemes are proposed and first simulations are conducted to validate the protection efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF070 Commissioning of Beam Instrumentation at the CERN AWAKE Facility After Integration of the Electron Beam Line 1993
 
  • I. Gorgisyan, C. Bracco, S. Burger, S. Döbert, S.J. Gessner, E. Gschwendtner, L.K. Jensen, S. Jensen, S. Mazzoni, D. Medina, K. Pepitone, L. Søby, F.M. Velotti, M. Wendt
    CERN, Geneva, Switzerland
  • M. Cascella, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • V.A. Verzilov
    TRIUMF, Vancouver, Canada
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch*. The plasma is induced in a 10 m long Rubidium vapour cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN SPS. A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams such as transverse position, transverse profile as well as temporal synchronization. This contribution presents the status of the beam instrumentation in AWAKE, including the new instruments incorporated into the system for measurements with the electron beam line, and reports on the performance achieved during the AWAKE runs in 2017.
* Gschwendtner E., et al. "AWAKE, the Advanced Proton Driven Plasma Wakefield Experiment at CERN", NIM A 829 (2016)76-82
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)