Author: Tishchenko, A.A.
Paper Title Page
TUPML074 Resonant Excitation of Accelerating Field in Dielectric Corrugated Waveguide 1715
 
  • A. Lyapin, S.T. Boogert, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • A. Aryshev
    KEK, Ibaraki, Japan
  • A.A. Tishchenko
    MEPhI, Moscow, Russia
 
  Funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 655179.
Beam driven dielectric wakefield accelerators (DWAs) [*] typically operate in the terahertz frequency range, which pushes the plasma breakdown threshold for surface electric fields into the multi GV/m range. DWA technique allows one to accommodate a significant amount of charge per bunch, and opens access to conventional fabrication techniques for the accelerating structures. Resonant excitation of coherent Cherenkov radiation in DWA by a multi-bunch beam was used for selective resonant mode excitation [**] and enhancement of accelerating wakefield [***]. We investigate the resonant excitation of Cherenkov Smith-Purcell radiation [****] in a corrugated cylindrical waveguide by a multi-bunch electron beam. The accelerating field is calculated using Particle in Cell simulations and some basic post-processing is done in order to estimate the possible enhancement of the accelerating field. The aim of this work is to investigate regimes of the resonant excitation that can potentially produce accelerating gradients above 1 GV/m.
* C. Jing, Rev. Acc. Phys. and Tech. 9, 127 (2016).
** G. Andonian, APL 98, 202901 (2011).
*** J.G. Power, PRSTAB 3, 101302 (2000).
**** A.A. Ponomarenko, A.A. Tishchenko, NIMB 309, 223 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)