Author: Taddia, G.T.
Paper Title Page
WEPML032 The FAIR-SIS100 Bunch Compressor RF Station 2759
 
  • H.G. König, R. Balß, P. Hülsmann, H. Klingbeil, P.J. Spiller
    GSI, Darmstadt, Germany
  • R. Gesche, J.H. Scherer
    Aurion Anlagentechnik GmbH, Seligenstadt, Germany
  • A. Morato, C. Morri, G.T. Taddia
    OCEM, Valsamoggia, Italy
 
  In the frame of the Facility for Antiproton and Ion Research (FAIR) 9 bunch compressor RF stations were ordered for the first stage of realization of the SIS100 synchrotron. For RF gymnastics referred to as bunch rotation, one RF station has to provide a sudden rise in gap voltage of up to 40 kVp within less than 30 μs. The system is designed for a maximum RF burst of 3 ms per second. The RF frequency will be pre-selectable between 310 kHz and 560 kHz at a harmonic number of h=2 with respect to the beam. Compressed bunches with a peak current > 150 A and a width < 50 ns are the goal. For this purpose, a 1.218 m long cavity was designed using iron-based magnetic alloy cores. Variable vacuum capacitors are attached for tuning. The cavity is driven by a cross-coupled push-pull tetrode amplifier. This scheme minimizes the influence of the tetrode's DC current at the working point to the cores. The energy for the pulsed system is stored in a relatively small capacitor bank which will be charged semi-continuously and a voltage-stabilizing device is added. Cavity and power amplifier were realized by AURION Anlagentechnik GmbH ' the power supply unit is designed and built by OCEM Power Electronics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML034 Design and Commissioning of the RF System of the Collector Ring at FAIR 2765
 
  • U. Laier, R. Balß, A. Dolinskyy, P. Hülsmann, H. Klingbeil, T. Winnefeld
    GSI, Darmstadt, Germany
  • G. Blokesch, F. Wieschenberg
    Ampegon PPT GmbH, Dortmund, Germany
  • K. Dunkel, M. Eisengruber, J.H. Hottenbacher
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • C. Morri, M.P. Pretelli, G.T. Taddia
    OCEM, Valsamoggia, Italy
 
  The Collector Ring (CR), a storage ring intended to perform efficient cooling of secondary beams, is under construction at GSI in the scope of the FAIR project. The RF system of the CR has to provide a frequency range from 1.1 to 1.5 MHz and pulsed gap voltages of up to 200 kVp (0.2 to 1 Hz, max. 10-3 duty cycle) and up to 10 kVp in CW operation. Five identical RF stations will be built. Each RF station consists of an inductively loaded cavity, a tetrode based power amplifier, a semiconductor driver amplifier, a switch mode power supply and two digital feedback loops. The main components of the RF station are designed, built and commissioned in close collaboration between GSI and three companies: RI Research Instruments GmbH, Ampegon PPT GmbH and OCEM Energy Technology SRL. In 2016, the first of five RF stations has been integrated at GSI. In 2017 the system was successfully commissioned to demonstrate that all envisaged parameters have been achieved. This contribution will present the requirements imposed the system, the principal design of the overall system as well as of its key components, and the results of the commissioning of the first RF station.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL062 The New 20 kA 80 V Power Supply for the 520 MeV H Cyclotron at TRIUMF 3792
 
  • S. Carrozza, L. Bondesan, A. Morato, M.P. Pretelli, G.T. Taddia
    OCEM, Valsamoggia, Italy
  • M.C. Bastos, J.-P. Burnet, G. Hudson, Q. King, G. Le Godec, O. Michels
    CERN, Geneva, Switzerland
  • Y. Bylinskii, A.C.M. Leung, W. L. Louie, F. Mammarella, R.B. Nussbaumer, C. Valencia
    TRIUMF, Vancouver, Canada
 
  The new 20 kA, 80 V power supply for the main magnet of the 520 MeV H Cyclotron at TRIUMF was awarded to OCEM. It has replaced the original system (commissioned in 1976) based on a series pass regulator. The final acceptance tests have demonstrated the com-pliance with the project specifications, especially for the high current stability required for the Cyclotron operation. The current stability is ±5 ppm, including current ripple, for a period of more than 8 hours of continuous operation. In addition, the magnetic field can be further stabilized us-ing feedback of a flux loop signal. OCEM designed the power supply to use the third gen-eration of Function Generator/Controller (FGC3) control electronics from CERN. This was chosen to obtain the high current stability required by TRIUMF. This collaboration was facilitated through a Knowledge Transfer agreement between CERN and OCEM. The power supply commis-sioning has been performed as a collaboration between OCEM, TRIUMF and CERN. This paper describes the topology of the power supply, the control electronics, the high-precision current measure-ment system and the associated software as well as the commissioning results carried out with the magnet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)