Author: Sy, A.V.
Paper Title Page
MOPMK016 Calculations of Beam-Beam Effect and Luminosity for Crab Dynamics Simulations in JLEIC 386
 
  • H. Huang, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC05-06OR23177 and DE-AC02-06CH11357.
Crab crossing is an integral part of the Jefferson Lab Electron-Ion Collider (JLEIC) design to achieve high luminosity while meeting the detection and physics pro-gram requirements. The crab crossing scheme provides a head-on beam-beam collision for beams with a nonzero crossing angle. Simulations of crabbing dynamics currently do not include beam-beam effects. We describe a framework for accurate simulation of beam-beam effects on crabbing dynamics by applying a numerical calculation of the Bassetti-Erskine analytic solution to symplectic particle tracking codes. The numerical calculation is benchmarked against the analytic solution by calculating the luminosity reduction for several colliding beam scenarios. Benchmarking results show good agreement be-tween the numerical calculation and analytic solution, paving the way for implementation of the beam-beam kick to Elegant tracking simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK127 Toroidal Merger Simulations for the JLEIC Bunched Beam Electron Cooler Ring 3540
 
  • A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The bunched beam electron cooler ring for the Jefferson Lab Electron-Ion Collider (JLEIC) requires a merger system to transport magnetized electron beams of two different energies to the same energy recovery linac (ERL) beamline. The system is especially challenging compared to existing mergers for ERL or hadron cooling applications (as at COSY) due to the small separation in energy between the two beams; for the JLEIC bunched beam cooler, the two beam energies may only differ by a factor of 4. An additional complication is the use of a magnetized beam. A toroidal merger system is studied using G4Beamline/GEANT4. Preservation of the quality of the low energy beam from the injector is especially vital for efficient cooling performance and compatibility with the ERL. Effects of the toroidal system on transverse and longitudinal emittances of the magnetized beams, as well as space charge effects, are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML009 Polarized Deuteron Negative Ion Source for Nuclear Physics Applications 4665
 
  • V.G. Dudnikov, M.A. Cummings, R.P. Johnson
    Muons, Inc, Illinois, USA
  • A.V. Sy
    JLab, Newport News, Virginia, USA
 
  The proposed U.S. Electron-Ion Collider (EIC) provides a unique tool to explore the next frontier in Quantum Chromodynamics, the dependence of hadron structure on the dynamics of gluons and sea quarks. Polarized beams are essential to these studies; understanding of the hadron structure cannot be achieved without knowledge of the spin. The existing EIC concepts utilize both polarized electrons and polarized protons/light ion species to probe the sea quark and gluon distributions. Polarized deuterons provide an especially unique system for study by essentially providing a combination of quark and nuclear physics. We note that there are currently no operational polarized deuteron beam sources in the United States. This polarized deuteron source can serve as a polarized deuteron injector for a future EIC, with additional applications in polarimetry and polarized gas targets for experiments at CEBAF or RHIC and would be very useful for our future facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)