Paper | Title | Page |
---|---|---|
WEPMF072 | Magnet Power Supplies for ALS-U | 2538 |
|
||
The ALS-U project is an upgrade to the existing Advanced Light Source at Lawrence Berkeley Laboratory to a diffraction limited light source. To be able to achieve the small horizontal emittance of the ALS-U, the three bend achromats in the ALS will be replaced with nine bend achromats. Because the lifetime of the ALS-U beam will be significantly reduced, the plan is to use a swap out injection scheme between the storage ring and a new accumulator ring. The present plan is to use individual power supplies for each magnet in the storage ring, and series connected magnet strings for the accumulator ring. The sheer number of supplies needed, along with the tighter stability requirements for the ALS-U, is demanding in terms of the power supply requirements for stability and reliability. This paper will discuss the ALS-U magnet power supply requirements, and possible options to meet them. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF072 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL020 | Design of Asymmetric Quadrupole Gradient Bending R&D Magnet for the Advanced Light Source Upgrade (ALS-U) | 3667 |
|
||
Lawrence Bekerley National Laboratory (LBNL) is en-gaged in the development of magnets for the upgrade of the ALS synchrotron (ALS-U) [1]. The proposed ALS-U lattice is a 9-bend achromat reproducing the existing 12-fold symmetric ALS foot print. The ALS-U lattice requires strong focusing elements and the dipole magnet requires high gradient larger than 46 T/m. This paper presents the detailed design of the R&D dipoles under construction. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF036 | Status of the Conceptual Design of ALS-U | 4134 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The ALS-U conceptual design promises to deliver diffraction limited performance in the soft x-ray range by lowering the horizontal emittance to about 70 pm rad resulting in two orders of brightness increase for soft x-rays compared to the current ALS. The design utilizes a nine bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper shows some aspects of the completed conceptual design of the accelerator, as well as some results of the R&D program that has been ongoing for the last years. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF078 | Simulation of Trajectory Correction in Early Commissioning of the Advanced Light Source Upgrade | 4256 |
|
||
Funding: *Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231. The ALS upgrade into a diffraction-limited soft x-rays light source requires a small emittance, which is achieved by much stronger focusing than in the present ALS. Very strong focusing elements and a relatively small vacuum chamber make the required rapid commissioning a significant challenge. This paper will describe the progress towards a start-to-end simulation of the machine commissioning and present first simulation results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF078 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |