Paper | Title | Page |
---|---|---|
THPAK071 | Simulation Study of the Magnetized Electron Beam | 3395 |
SUSPF086 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177 Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK071 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK108 | Production of Magnetized Electron Beam from a DC High Voltage Photogun | 4567 |
|
||
Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177 Bunched-beam electron cooling is a key feature of all proposed designs of the future electron-ion collider, and a requirement for achieving the highest promised collision luminosity. At the Jefferson Lab Electron Ion Collider (JLEIC), fast cooling of ion beams will be accomplished via so-called 'magnetized cooling' implemented using a recirculator ring that employs an energy recovery linac. In this contribution, we describe the production of magnetized electron beam using a compact 300 kV DC high voltage photogun with an inverted insulator geometry, and using alkali-antimonide photocathodes. Beam magnetization was assessed using a modest diagnostic beamline that includes YAG view screens used to measure the rotation of the electron beamlet passing through a narrow upstream aperture. Magnetization results are presented for different gun bias voltages and for different laser spot sizes at the photocathode, using 532 nm lasers with DC and RF time structure. Photocathode lifetime was measured at currents up to 4.5 mA, with and without beam magnetization. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK108 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK110 | 300 kV DC High Voltage Photogun with Inverted Insulator Geometry and CsK2sb Photocathode | 4571 |
SUSPF028 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177 A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK110 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML096 | A Non-Invasive Magnetic Momentum Monitor Using a TE011 Cavity | 4889 |
|
||
Funding: Authored by Jefferson Science Associates, LLC with Laboratory Directed Research and Development funding, under U.S. DOE Contract No. DE-AC05-06OR23177. The Jefferson Lab Electron-Ion Collider (JLEIC) design relies on cooling of the ion beam with bunched electron beam. The bunched beam cooler complex consists of a high current magnetized electron source, an energy recovery linac, a circulating ring, and a pair of long solenoids where the cooling takes place. A non-invasive real time monitoring system is highly desired to quantify electron beam magnetization. The authors propose to use a passive copper RF cavity in TE011 mode as such a monitor. In this paper, we will show the mechanism and scaling law of this device, as well as the design and testing results of the prototype cavity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML096 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |