Author: Storey, J.W.
Paper Title Page
WEPAK008 Reconstructing Space-Charge Distorted IPM Profiles with Machine Learning Algorithms 2099
 
  • D.M. Vilsmeier, M. Sapinski, R. Singh
    GSI, Darmstadt, Germany
  • J.W. Storey
    CERN, Geneva, Switzerland
 
  Measurements of undistorted transverse profiles via Ionization Profile Monitors (IPMs) may pose a great challenge for high brightness or high energy beams due to interaction of ionized electrons or ions with the electromagnetic field of the beam. This contribution presents application of various machine learning algorithms to the problem of reconstructing the actual beam profile from measured profiles that are distorted by beam space-charge interaction. (Generalized) linear regression, artificial neural network and support vector machine algorithms are trained with simulation data, obtained from the Virtual-IPM simulation tool, in order to learn the relation between distorted profiles and original beam dimension. The performance of different algorithms is assessed and the obtained results are very promising for testing with simulation data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL019 A Novel Field Cage Design for the CPS IPM and Systematic Errors in Beam Size and Emittance 2193
 
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • D. Bodart, S. Levasseur, G. Schneider, J.W. Storey
    CERN, Geneva, Switzerland
  • M. Sapinski
    GSI, Darmstadt, Germany
 
  An ionization profile monitor has been recently installed in the CERN proton synchrotron. We design a novel and simple structure field cage that suppresses the secondary electrons that are induced by the ionized ions. We discuss a field cage design, and the systematic error on the basis of beam size and emittance, considering the non-uniformity of the fields, the space-charge effect of the beam, and the lattice parameter errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL075 Time-Resolved Transverse Beam Profile Measurements with a Rest Gas Ionisation Profile Monitor Based on Hybrid Pixel Detectors 2361
 
  • S. Levasseur, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • W. Bertsche, H. Sandberg
    UMAN, Manchester, United Kingdom
  • D. Bodart, A. Huschauer, G. Schneider, J.W. Storey, R. Veness
    CERN, Geneva, Switzerland
  • M. Sapinski
    GSI, Darmstadt, Germany
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A novel rest gas ionisation profile monitor which aims to provide continuous, bunch-by-bunch and turn-by-turn measurement of the transverse beam profile has recently been in- stalled in the CERN Proton Synchrotron (PS) as part of the LHC Injector Upgrade (LIU) project. The instrument consists of an electric drift field to transport ionisation electrons produced by beam-gas interaction onto a measurement plane, and a magnetic field to maintain the transverse position of the ionisation electrons. The electron detector located at the measurement plane is based on four in-vacuum hybrid pixel detectors. The detectors record the position, time and energy of single ionisation electrons with unprecedented precision compared to traditional MCP based techniques. Continuous transverse beam profile measurements for LHC-type beams in the PS will be presented, demonstrating the unique capabilities of the instrument to provide new insights into beam dynamics throughout the acceleration cycle.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)