Author: Shishlo, A.P.
Paper Title Page
TUPAL045 Towards Operational Scalability for H Laser Assisted Charge Exchange 1110
 
  • S.M. Cousineau, A.V. Aleksandrov, T.V. Gorlov, Y. Liu, M.A. Plum, A. Rakhman, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.E. Johnson, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • M.J. Kay
    UTK, Knoxville, Tennessee, USA
 
  The experimental development of H laser assisted charge exchange, a.k.a. laser stripping, has been ongoing at the SNS accelerator since 2006 in a three-phase approach. The first two phases associated with proof-of-principle and proof-of-practicality experiments have been successfully completed and demonstrated >95% H stripping efficiency for up to 10 us. The final phase is a proof-of-scalability stage to demonstrate that the method can be deployed for realistic beam duty factors. The experimental component of this effort is centered on achieving high efficiency stripping through the use of a laser power amplification scheme to recycle the macropulse laser light at the interaction point of the H stripping. Such a recycling cavity will be necessary for any future operational laser stripping system with at least millisecond duration H pulses. A second component of the proof-of-scalability phase is to develop a conceptual design for a realistic laser stripping scheme. The status of these efforts and challenges associated with deploying the recycling cavity into the laser stripping experiment will be described in this talk.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL046 Construction, Test, and Operation of a new RFQ at the Spallation Neutron Source (SNS) 1113
 
  • Y.W. Kang, A.V. Aleksandrov, W.E. Barnett, M.S. Champion, M.T. Crofford, B. Han, S.W. Lee, J. Moss, R.T. Roseberry, J.P. Schubert, A.P. Shishlo, M.P. Stockli, C.M. Stone, R.F. Welton, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • C.C. Peters, J. Price
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: * This work was supported by SNS through UT-Battelle, LLC, under contract DEAC0500OR22725 for the U.S. DOE.
A new RFQ was successfully installed recently in the SNS linac to replace the old RFQ that was used for more than a decade with certain operational limitations. The new RFQ was completely tested with H ion source in the Beam Test Facility (BTF) at SNS. For robust operation of SNS at 1.4 MW, the full design beam power and to satisfy the beam current requirement of the forthcoming SNS proton power upgrade (PPU) project, an RFQ with enhanced performance and reliability was needed. The new RFQ was built to have the beam parameters identical to those of the first RFQ but with improved RF and mechanical stability and reliability for continuous operation of neutron production. The tests confirmed that the new RFQ can run with high beam transmission efficiency at around 90 % and notably improved operational stability. In this paper, construction, test, installation, and operation of the new RFQ in SNS are discussed with the performance improvements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK069 Open XAL Status Report 2018 3388
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, E. Laface, Y. Levinsen, N. Milas, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, G. Normand, A. Savalle
    GANIL, Caen, France
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010. The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics and high-level control (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, new RF models, and updated application framework along with new generic accelerator physics applications. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)