Author: Shamuilov, G. K.
Paper Title Page
THXGBD2 Overview of Undulator Concepts for Attosecond Single-Cycle Light 2878
THPMK142   use link to see paper's listing under its alternate paper code  
 
  • A. Mak, V.A. Goryashko, P.M. Salen, G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Dunning, B.W.J. MᶜNeil, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Hebling, Z. Tibai, Gy. Tóth
    University of Pecs, Pécs, Hungary
  • Y. Kida, T. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
  • B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: Swedish Research Council (VR, 2016-04593); Stockholm-Uppsala Centre for Free-Electron Laser Research; C. F. Liljewalchs stipendiestiftelse.
The production of intense attosecond light pulses is an active area in accelerator research, motivated by the stringent demands of attosecond science: (i) short pulse duration for resolving the fast dynamics of electrons in atoms and molecules; (ii) high photon flux for probing and controlling such dynamics with high precision. While the free-electron laser (FEL) can deliver the highest brilliance amongst laboratory x-ray sources today, the pulse duration is typically 10-100 femtoseconds. A major obstacle to attaining attosecond duration is that the number of optical cycles increases with every undulator period. Hence, an FEL pulse typically contains tens or hundreds of cycles. In recent years, several novel concepts have been proposed to shift this paradigm, providing the basis for single-cycle pulses and paving the way towards high-brilliance attosecond light sources. This article gives an overview of these concepts.
 
slides icon Slides THXGBD2 [1.758 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK144 Lattices for a 4th-Generation Synchrotron Light Source 4639
 
  • G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
 
  Inspired by the ESRF upgrade (Extremely Brilliant Source, EBS), I present some modern lattices for a medium-sized 4th-generation synchrotron radiation source. They incorporate new elements, such as anti-bend magnets. The composed lattices are optimized using a simple double-objective algorithm. Its goal is to minimize the natural emittance and absolute chromaticities simultaneously. Then, the lattices are analyzed and compared to a version of the ESRF-EBS lattice scaled down in size. The design is performed to meet the needs of the user community of the Siberian Synchrotron and Terahertz Radiation Centre under the umbrella of the Budker Institute of Nuclear Physics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)