Paper | Title | Page |
---|---|---|
TUPAF016 | Increase of IPHI Beam Power at CEA Saclay | 694 |
|
||
For the first time, in April 2016, the SILHI source produced a proton beam for IPHI RFQ. Due to several technical difficulties on the RFQ water cooling skid, a short RF power pulse (100 μs at the beginning until few hundred microseconds) is injected into the RFQ accelerates the high intensity proton beam up to 3 MeV. The repetition rate is tuned between 1 and 5 Hz. Under these conditions, the beam power after the RFQ is lower than 100 W. At the end of 2017, the 352 MHz RFQ conditioning has been completed (with the same duty cycle) and the proton beam has been accelerated. The increase of the beam power is expected to continue in 2018 in order to reach several kilowatts by the end of the year. In addition, two Ionization beam Profile Monitors (IPM) developed for ESS have been tested on the deviated beam line with a very low duty cycle. The IPHI facility should demonstrate the possibility to produce neutrons with a flexible compact accelerator in the framework of the SONATE project. This paper presents the status of the IPHI project in April 2018. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAF087 | The First Experience and Results of Beam Diagnostics Deployment at the ESS Accelerator | 2054 |
|
||
The European Spallation Source (ESS) will produce neutrons for science by subjecting a tungsten target to the high-intensity proton beam from a superconducting linear accelerator. A complete suite of beam diagnostics will enable tuning, monitoring and protection of the accelerator during commissioning, studies and operation. As an initial step toward neutron production, the Ion Source and the 75 keV Low Energy Transport Line is installed on the ESS site in Lund, Sweden. To support the commissioning and characterization of this first beam-producing system, a subset of the full diagnostics suite is deployed. This includes the following equipment: a faraday cup, current transformers, an emittance measurement unit, beam-induced fluorescence monitors, and a doppler-shift spectroscopy system. All aspects of the deployment experience, from acceptance testing through installation, verification, and commissioning will be presented.
*Beam Instrumentation |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF087 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAK015 | The SARAF-LINAC Project 2018 Status | 994 |
|
||
SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC Solenoid-Package are under construction and their test stands construction or adaptation is in progress at Saclay. Meanwhile, the cryomodules and the global system just passed their Critical Design Reviews. This paper presents the status of the SARAF-LINAC Project at April 2018. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |