Paper |
Title |
Page |
MOPMF073 |
Rejuvenation of 7-Gev SuperKEKB Injector Linac |
300 |
|
- K. Furukawa, M. Akemoto, D.A. Arakawa, Y. Arakida, H. Ego, A. Enomoto, Y. Enomoto, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, M. Kawamura, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, H. Nakajima, K. Nakao, T. Natsui, M. Nishida, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, M. Satoh, Y. Seimiya, A. Shirakawa, H. Sugimura, T. Suwada, T. Takenaka, M. Tanaka, N. Toge, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
KEK, Ibaraki, Japan
|
|
|
KEK injector linac has delivered electrons and positrons for particle physics and photon science experiments for more than 30 years. It was upgraded for the SuperKEKB project, which aims at a 40-fold increase in luminosity over the previous project KEKB, in order to increase our understanding of flavor physics beyond the standard model of elementary particle physics. SuperKEKB energy-asymmetric electron-positron collider with its extremely high luminosity requires a high current, low emittance and low energy spread injection beam from the injector. The electron beam is generated by a new type of RF gun, that provides a much higher beam current to correspond to a large stored beam current and a short lifetime in the ring. The positron source is another major challenge that enhances the positron bunch intensity from 1 to 4 nC by increasing the positron capture efficiency, and the positron beam emittance is reduced from 2000 μm to 10 μm in the vertical plane by introducing a damping ring, followed by the bunch compressor and energy compressor. The summary of the rejuvenation is reported.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF073
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF074 |
Beam Phase Space Jitter and Effective Emittance for SuperKEKB Injector Linac |
304 |
|
- Y. Seimiya, N. Iida, T. Kamitani, M. Satoh
KEK, Ibaraki, Japan
|
|
|
In SuperKEKB linac, stable high charged low emittance beam is necessary. Transported beam to SuperKEKB Main Ring (MR) must be stable to the extent that the beam can be injected inside MR acceptance. SuperKEKB requirement must be satisfied for emittance including beam phase space jitter, called as effective emittance. Large amplitude beam position jitter has been measured at linac end. We evaluated that the effect of the beam position jitter on effective emittance and investigated the source of the beam phase space jitter.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF074
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF077 |
A Design Study of the Electron-driven ILC Positron Source Including Beam Loading Effect |
311 |
SUSPF003 |
|
|
- H. Nagoshi, M. Kuriki
HU/AdSM, Higashi-Hiroshima, Japan
- S. Kashiwagi
Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
- K. Negishi
Iwate University, Morioka, Iwate, Japan
- T. Omori, M. Satoh, Y. Seimiya, J. Urakawa
KEK, Ibaraki, Japan
- Y. Sumitomo
LEBRA, Funabashi, Japan
- T. Takahashi
Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
|
|
|
The International Linear Collider (ILC) is a next-generation accelerator for high-energy physics to study the Higgs and top sector in the Standard Model, and new physics such as supersymmetry and dark matter. ILC positron source based on Electron-driven method has been proposed as a reliable technical backup. In this article, we report the design study of the positron source based on the off-the-shelf RF components. The positron is generated and accelerated in a multi-bunch format. To compensate the energy variation by the transient beam loading effect, we employ AM (Amplitude Modulation) technique and the results were 16.60 ± 0.14 MV (peak-to-peak) for L-band 2m cavity driven by 22.5 MW power and 25.76 ± 0.19 MV (peak-to-peak) for S-band 2m ac-celerator driven by 36 MW power with 0.78 A beam load-ing.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF077
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|