Author: Schneider, G.
Paper Title Page
WEPAF034 A Supersonic Gas Jet-Based Beam Profile Monitor Using Fluorescence for HL-LHC 1891
 
  • H.D. Zhang, A.S. Alexandrova, R. Schnuerer, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Ady, E. Barrios Diaz, N. Chritin, O.R. Jones, R. Kersevan, T. Marriott-Dodington, S. Mazzoni, A. Rossi, G. Schneider, R. Veness
    CERN, Geneva, Switzerland
  • A.S. Alexandrova, A. Salehilashkajani, R. Schnuerer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • P. Smakulski
    WRUT, Wroclaw, Poland
 
  Funding: The HL-LHC project, the Helmholtz Association under contract VH-NG-328, the EU's 7th Framework Programme under grant agreement no 215080 and the STFC Cockcroft core grant No. ST/G008248/1.
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to increase the machine luminosity by a factor of 10 as compared to the LHC's design value. To achieve this goal, a special type of electron lens is being developed. It uses a hollow electron beam which co-propagates with the hadron beam to act on any halo particles without perturbing the core of the beam. The overlapping of both beams should be carefully monitored. This contribution presents the design principle and detailed characteristics of a new supersonic gas jet-based beam profile monitor. In contrast to earlier monitors, it relies on fluorescence light emitted by the gas molecules in the jet following interaction with the primary hadron beams. A dedicated prototype has been designed and built at the Cockcroft Institute and is being commissioned. Details about monitor integration, achievable resolution and dynamic range will be given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL019 A Novel Field Cage Design for the CPS IPM and Systematic Errors in Beam Size and Emittance 2193
 
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • D. Bodart, S. Levasseur, G. Schneider, J.W. Storey
    CERN, Geneva, Switzerland
  • M. Sapinski
    GSI, Darmstadt, Germany
 
  An ionization profile monitor has been recently installed in the CERN proton synchrotron. We design a novel and simple structure field cage that suppresses the secondary electrons that are induced by the ionized ions. We discuss a field cage design, and the systematic error on the basis of beam size and emittance, considering the non-uniformity of the fields, the space-charge effect of the beam, and the lattice parameter errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL075 Time-Resolved Transverse Beam Profile Measurements with a Rest Gas Ionisation Profile Monitor Based on Hybrid Pixel Detectors 2361
 
  • S. Levasseur, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • W. Bertsche, H. Sandberg
    UMAN, Manchester, United Kingdom
  • D. Bodart, A. Huschauer, G. Schneider, J.W. Storey, R. Veness
    CERN, Geneva, Switzerland
  • M. Sapinski
    GSI, Darmstadt, Germany
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A novel rest gas ionisation profile monitor which aims to provide continuous, bunch-by-bunch and turn-by-turn measurement of the transverse beam profile has recently been in- stalled in the CERN Proton Synchrotron (PS) as part of the LHC Injector Upgrade (LIU) project. The instrument consists of an electric drift field to transport ionisation electrons produced by beam-gas interaction onto a measurement plane, and a magnetic field to maintain the transverse position of the ionisation electrons. The electron detector located at the measurement plane is based on four in-vacuum hybrid pixel detectors. The detectors record the position, time and energy of single ionisation electrons with unprecedented precision compared to traditional MCP based techniques. Continuous transverse beam profile measurements for LHC-type beams in the PS will be presented, demonstrating the unique capabilities of the instrument to provide new insights into beam dynamics throughout the acceleration cycle.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)