Paper | Title | Page |
---|---|---|
TUPAK003 | Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI | 959 |
|
||
Funding: Work supported by BMBF Contr. No. 05P15RFBA and EU Framework Programme H2020 662186 (MYRTE) For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI/HIM and IAP is currently in progress. It aims for developing a supercon-ducting (sc) continuous wave (CW) LINAC with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The LINAC design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with unchanged minimum energy spread. Testing of the first CH-cavity in 2016 demonstrated a promising maximum accelerating gradient of Ea = 9.6 MV/m; the worldwide first beam test with this sc multi-gap CH-cavity in 2017 was a milestone in the R&D work of GSI/HIM and IAP. In the light of experience gained in this research so far, the beam dynamics layout for the entire LINAC has recently been updated and optimized. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAK004 | Superconducting CH-Cavity Heavy Ion Beam Testing at GSI | 962 |
|
||
Recently the first section of a standalone superconducting (sc) continuous wave (cw) heavy ion Linac as a demonstration of the capability of 217 MHz multi gap Crossbar H-mode structures (CH) has been commissioned and extensively tested with beam from the GSI- High Charge State Injector. The demonstrator set up reached acceleration of heavy ions up to the design beam energy and beyond. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This contribution presents systematic beam measurements with varying RF-amplitudes and phases of the CH-cavity, as well as versatile phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multi gap CH-cavity is a milestone of the R&D work of Helmholtz Institute Mainz (HIM) and GSI in collaboration with Goethe University Frankfurt (GUF) in preparation of the sc cw heavy ion Linac project and other cw-ion beam applications. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK004 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |