Author: Schaub, S. C.
Paper Title Page
TUZGBE4 Toward High-Power High-Gradient Testing of mm-Wave Standing-Wave Accelerating Structures 1224
 
  • E.A. Nanni, V.A. Dolgashev, A.A. Haase, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S. Jawla, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • S. C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: This work is supported in part by Department of Energy contract DE-AC02-76SF00515 (SLAC) and DE-SC0015566 (MIT).
We will preliminary testing results for single-cell accelerating structures intended for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures consist of pi-mode standing-wave cavities fed with TM01 circular waveguide mode. We fabricated of two structures one in copper and the other in CuAg alloy. Cold RF tests confirm the design RF performance of the structures. The geometry and field shape of these accelerating structures is as close as practical to single-cell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. The structures will be powered with a MW gyrotron oscillator that produces microsecond pulses. One megawatt of RF power from the gyrotron may allow us to reach a peak accelerating gradient of 400 MeV/m.
 
slides icon Slides TUZGBE4 [4.644 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBE4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML015 Dielectric Multipactor Discharges at 110 GHz 4684
 
  • S. C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  A 1.5 MW, 110 GHz gyrotron has been used to experimentally measure the maximum sustainable fields on dielectric materials in vacuum. The purpose of this work is to evaluate the suitability of these materials for future applications in high frequency linear accelerators and high power terahertz components. To our knowledge, these are the first measurements of multipactor phenomena in the millimeter wave or terahertz frequency range. Materials tested include alumina, sapphire, fused quartz, crystal quartz, and high resistivity silicon. Dielectric samples were tested both as windows, with electric fields parallel to the surface, and sub-wavelength dielectric rod waveguides, with electric fields perpendicular to the surface. Surface electric fields in excess of 52 MV/m were achieved in 3 microsecond pulses. Visible light emission, absorbed/scattered microwave power, and emitted electrons were measured to characterize the discharges on the dielectric surfaces. The results of these experiments have been compared to theoretical calculations of multipactor discharges, testing these theories at significantly higher frequencies than has been done before.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)