Author: Rusnak, B.
Paper Title Page
WEPAL043 Distributed Control Architecture for an Integrated Accelerator and Experimental System 2268
 
  • D.J. Gibson, R.A. Marsh, B. Rusnak
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A neutron imaging demonstration system is under construction at LLNL, integrating 4 MeV and 7 MeV deuteron accelerators with gas-based neutron production target the associated supply and return systems. This requires integrating a wide variety of control points from different rooms and floors of the Livermore accelerator facility at a single operator station. The control system adopted by the commercial vendor of the accelerators relies on the National Instruments cRIO platform, so that hardware system has been extended across all the beamline and experimental components. Here we present the unified, class-based framework that has been developed and implemented to connect the operator station through the deployed Real Time processors and FPGA interfaces to the hardware on the floor. Connection between the deployed processors and the operator workstations is via a standard TCP/IP network and relies on a publish/subscribe model for data distribution. This measurement and control framework has been designed to be extensible as additional control points are added, and to enable comprehensive, controllable logging of shot-correlated data at up to 300 Hz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL022 Precision Magnet Measurements for Deuteron Beam Transport 3670
 
  • R.A. Marsh, D.J. Gibson, B. Rusnak
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A versatile 4 MeV and 7 MeV deuteron beam transport line is being developed at Lawrence Livermore National Laboratory in support of an accelerator-driven source for fast neutron imaging. The beamline design requires precise alignment and high quality quadrupole magnets to transport a low emittance beam to the target through diagnostics, a bending dipole, and a differential pumping line with minimum beam loss and emittance growth. Vector magnetic field measurements of these magnets have been completed using a mobile version of an existing magnet mapping capability. This magnet mapping system is being used to ensure the delivered magnets meet the field uniformity specification, and that the mountings are aligned and capable of reaching the specified alignment tolerances. Details of the magnet measurement and calibration process that enable accurate field measurements to represent the intrinsic magnet field quality and not the systematic error of the measurement setup are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)