Paper |
Title |
Page |
WEPAL029 |
FLUTE Diagnostics Integration |
2227 |
|
- M. Yan, A. Bernhard, E. Bründermann, S. Funkner, A. Malygin, S. Marsching, W. Mexner, A. Mochihashi, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, T. Schmelzer, M. Schuh, N.J. Smale, P. Wesolowski, S. Wüstling
KIT, Karlsruhe, Germany
- I. Križnar
Cosylab, Ljubljana, Slovenia
|
|
|
FLUTE (Ferninfrarot Linac- Und Test-Experiment) will be a new compact versatile linear accelerator at KIT. Its primary goal is to serve as a platform for a variety of accelerator studies as well as to generate strong ultra-short THz pulses for photon science. The machine consists of an RF gun, a traveling wave linac and a D-shaped bunch compressor chicane with corresponding diagnostics sections. In this contribution, we report on the latest developments of the diagnostics components. An overview of the readout and control system integration will be given.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL029
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMF068 |
Commissioning Status of FLUTE |
4229 |
|
- A. Malygin, A. Bernhard, E. Bründermann, A. Böhm, S. Funkner, S. Marsching, W. Mexner, A. Mochihashi, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, T. Schmelzer, M. Schuh, N.J. Smale, P. Wesolowski, M. Yan
KIT, Karlsruhe, Germany
- I. Križnar
Cosylab, Ljubljana, Slovenia
- M. Schwarz
CERN, Geneva, Switzerland
|
|
|
FLUTE (Ferninfrarot Linac- Und Test-Experiment) will be a new compact versatile linear accelerator at the KIT. Its primary goal is to serve as a platform for a variety of accelerator studies as well as to generate strong ultra-short THz pulses for photon science. The phase I of the project, which includes the RF photo injector providing electrons at beam energy of 7 MeV and a corresponding diagnostics section, is currently being commissioned. In this contribution, we report on the latest progress of the commissioning phase. The status of the gun conditioning will be given, followed by an overview of the RF system and the laser system.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF068
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPMF071 |
Design of a Very Large Acceptance Compact Storage Ring |
4239 |
|
- A.I. Papash, E. Bründermann, A.-S. Müller, R. Ruprecht, M. Schuh
KIT, Karlsruhe, Germany
|
|
|
Design of a very large acceptance compact storage ring is underway at the Institute for Beam Physics and Technology of the Karlsruhe Institute of Technology (Germany). Combination of a compact storage ring and a laser wake-field accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities. Meanwhile the post-LWFA beam is not fitted for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and lattices of a ring operating between 50 to 500 MeV energy range were investigated. The model suitable to store the post-LWFA beam with a wide momentum spread (1% to 2%) and ultra-short electron bunches of fs range was chosen as basis for further detailed studies. The DBA-FDF lattice with relaxed settings, split elements and high order optics of tolerable strength allows improving the dynamic aperture up to 20 mm. The momentum acceptance of the compact lattice exceeds 8% while dispersion is limited. The physical program includes turn-by-turn phase compression of a beam, crab cavities, dedicated alpha optics mode of operation, non-linear insertion devices etc.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF071
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|