Author: Rubin, D. L.
Paper Title Page
MOPMF013 eRHIC EIC: Plans for Rapid Acceleration of Polarized Electron Bunch at Cornell Synchrotron 108
 
  • F. Méot, E.C. Aschenauer, H. Huang, C. Montag, V. Ptitsyn, V.H. Ranjbar, E. Wang, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • I.V. Bazarov, D. L. Rubin
    Cornell University, Ithaca, New York, USA
  • L. Cultrera, G.H. Hoffstaetter, K.W. Smolenski, R.M. Talman
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Gaskell, O. Glamazdin, J.M. Grames
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An option as an injector into the polarized-electron storage ring of eRHIC EIC is a rapid-cycling synchrotron (RCS). Cornell's 10 GeV RCS injector to CESR presents a good opportunity for dedicated polarized bunch rapid-acceleration experiments, it can also serve as a test bed for source and polarimetry developments in the frame of the EIC R&D, as polarized bunch experiments require disposing of a polarized electron source, and of dedicated polarimetry in the linac region and in the RCS proper. This is as well an opportunity for a pluri-disciplinary collaboration between Laboratories. This paper is an introduction to the topic, and to on-going activities towards that EIC R&D project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF041 Use of Dimension-Reduction Techniques With Multi-Objective Genetic Algorithms to Improve the Vertical Emittance and Orbit at CESR 1901
SUSPL064   use link to see paper's listing under its alternate paper code  
 
  • W.F. Bergan, I.V. Bazarov, C.J. Duncan, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Liarte, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  Funding: DOE DE-SC0013571 NSF DGE-1650441
In order to reduce the vertical emittance at the Cornell Electron Storage Ring (CESR), we first measure and correct the vertical orbit, dispersion, and coupling. However, due to the finite resolution of our optics measurements, we still retain a significant residual emittance. In order to correct this further, we made use of the theory of sloppy models, according to which certain high-dimensionality systems can be modeled with significantly fewer "eigenparameters" that still contain most of the effect on the desired objective, in this case, the emittance.* However, we noted that using these knobs for tuning often resulted in increased vertical orbit errors. In an attempt to constrain these, we have applied multi-objective genetic algorithms to this problem. We have found that it can be more efficient to run such algorithms using our eigenparameters as the genes to be varied, as opposed to the raw magnet values. When running with the first 8 such knobs as genes, we can get either orbits or beam sizes as good as we obtain with our regular emittance-tuning algorithm which uses all the corrector magnets.
*K.S. Brown and J.P. Sethna, Phys. Rev. E 68, 021904 (2003).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF042 Measurement of Beam yz Crabbing Tilt Due to Wake Fields Using Streak Camera at CESR 1905
 
  • S. Wang, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This research was supported by NSF PHYS-1068662, PHYS-1416318 and DMR-1332208.
Transverse vertical wake fields can increase the vertical emittance and distort the phase space of a bunch in a storage ring. Recently, we observed charge-dependent vertical beam size growth with a single scraper inserted through the top of the storage ring vacuum chamber. This apparent growth was due in large part to the yz coupling (vertical crabbing) induced by the wake field from the asymmetric scraper configuration. Here, we report a direct measurement of a small beam yz crabbing tilt using a streak camera. The recorded images (projected beam profiles in yz plane) are analyzed with three different methods, which yield consistent beam yz tilts. We found the directly-measured current-dependent beam tilts by the streak camera are consistent with the beam tilts calculated from a wake field model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF025 Progress in Measurement and Modeling of Electron Cloud Effects at CesrTA 3007
 
  • S. Poprocki, S.W. Buechele, J.A. Crittenden, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467 and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505.
The synchrotron-radiation-induced buildup of low-energy electron densities in positron and proton storage rings limits performance by causing betatron tune shifts and incoherent emittance growth. The Cornell Electron Storage Ring (CESR) Test Accelerator project includes extensive measurement and modeling programs to quantify such effects and apply the knowledge gained to the design of future accelerator projects. We report on improved measurements of betatron tune shifts along a train of positron bunches, now accurate in both horizontal and vertical planes. Improved electron cloud buildup modeling uses detailed information on photoelectron production properties obtained from recently developed simulations and successfully describes the measurements after determining ring-wide secondary-yield properties of the vacuum chamber by fitting the model to data with a multi-objective optimizer. Cloud splitting in dipole magnetic fields is seen to be the source of horizontal tune shifts decreasing at higher bunch populations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF026 Modeling Studies for Synchrotron-Radiation-Induced Electron Production in the Vacuum Chamber Walls at CesrTA 3011
 
  • S. Poprocki, J.A. Crittenden, D. L. Rubin, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467 and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505.
We report on calculations of electron production by synchrotron radiation absorbed in the vacuum chamber walls of the Cornell Electron Storage Ring (CESR). These electrons are the source of electron clouds which limit the performance of storage rings by causing betatron tune shifts, instabilities and emittance growth. Until now, cloud buildup modeling codes have used ad hoc models of the production of the seed electrons. We have employed the photon scattering code Synrad3D to quantify the pattern of absorbed photons around the CESR ring, including the transverse distribution on the wall of the beam-pipe. These distributions in absorbed photon energy and incident angle are used as input to Geant4-based simulations of electron emission from the walls. The average quantum efficiency is found to vary dramatically with the location of the absorption site, owing to the distribution in impact energies and angles. The electron production energy spectrum plays an important role in the modeling of electron cloud buildup, where the interplay of production energy and acceleration by the beam bunches determines the time structure and multipacting characteristics of the cloud.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK137 Beam-Based Sextupolar Nonlinearity Mapping in CESR 3565
SUSPF067   use link to see paper's listing under its alternate paper code  
 
  • L. Gupta, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • S. Baturin
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • M.P. Ehrlichman, J.M. Maxson, R.E. Meller, D. L. Rubin, D. Sagan, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the U.S. National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams
In order to maintain beam quality during transport through a storage ring, sextupole magnets are used to make chromatic corrections, but necessarily introduce deleterious effects such as nonlinear resonances and reduced dynamic aperture. Implementing intricate sextupole distributions to mitigate these effects will rely on precision beam-based measurement of the applied sextupole distribution. In this work, we generalize previous sextupole mapping techniques by using resonant phase-locked excitation of the beam at the Cornell Electron Storage Ring (CESR), which accounts for variations in the normal mode tunes on a turn by turn basis. The methods presented here are applied to simulation and actual turn by turn data in CESR for both simplified and realistic sextupole distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML093 New Fast Kicker Results from the Muon g-2 E-989 Experiment at Fermilab 4879
 
  • A.P. Schreckenberger
    The University of Texas at Austin, Austin, Texas, USA
  • D. Barak, C.C. Jensen, G.E. Krafczyk, R.L. Madrak, H. Nguyen, H. Pfeffer, M. Popovic, J.C. Stapleton, C. Stoughton
    Fermilab, Batavia, Illinois, USA
  • A.T. Chapelain, A.A. Mikhailichenko, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • N.S. Froemming
    CENPA, Seattle, Washington, USA
  • J.L. Holzbauer
    UMiss, University, Mississippi, USA
  • A.I. Keshavarzi
    The University of Liverpool, Liverpool, United Kingdom
 
  We describe the installation, commissioning, and characterization of the injection kicker system for the E-989 experiment at Fermilab for a precision measurement of the muon anomalous magnetic moment. Control and monitoring systems have been implemented to acquire and record the waveforms of each kicker pulse, and measurements of various kicker system observables were recorded in the presence of the 1.45 T g-2 storage ring magnetic field. These monitoring systems are necessary to understand the systematic contribution to the measurement of the precession frequency. We examine the dependence of muon capture to kicker field predictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXGBE2 Muon Beam Dynamics and Spin Dynamics in the g-2 Storage Ring 5029
 
  • D. L. Rubin, A.T. Chapelain
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S. Charity, J. Price
    The University of Liverpool, Liverpool, United Kingdom
  • J.D. Crnkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
  • F.E. Gray
    Regis University, Denver, USA
  • J. E. Mott
    BUphy, Boston, Massachusetts, USA
  • W. Wu
    UMiss, University, Mississippi, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy DOE HEP DE-SC0008037
The goal of the new g-2 experiment at fermilab is a measurement of the anomalous magnetic moment of the muon, with uncertainty of less than 140 ppb. The experimental method is to store a beam of polarized muons in a storage ring with pure vertical dipole field and electrostatic focusing, and to measure the precession frequency. Control of the systematics depends on unprecedented knowledge of the details of the phase space of the muon distribution. That knowledge is derived from direct measurements with scintillating fiber detectors that are inserted into the muon beam for diagnostic measurements, traceback straw tube tracking chambers, as well as the calorimeters that measure energy, time and position of the decay positrons. The interpretation of the measurements depends on a detailed model of the storage ring guide field. This invited talk presents results of studies of the distribution from the commissioning run of the experiment.
 
slides icon Slides FRXGBE2 [12.809 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-FRXGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)